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Abstract. An independent set of variables is one in which no two vari-
ables occur in the same clause in a given instance of k-SAT. Instances
of k-SAT with an independent set of size i can be solved in time, within
a polynomial factor of 2n−i. In this paper, we present an algorithm for
k-SAT based on a modification of the Satisfiability Coding Lemma. Our

algorithm runs within a polynomial factor of 2(n−i)(1− 1
2k−2

), where i is
the size of an independent set. We also present a variant of Schöning’s
randomized local-search algorithm for k-SAT that runs in time which is
with in a polynomial factor of ( 2k−3

k−1
)n−i.

1 Introduction

The Propositional Satisfiability Problem (SAT) is one of significant theoreti-
cal and practical interest. Historically, SAT was the first problem to be proven
NP-complete. No polynomial-time algorithm for a k-SAT problem (k ≥ 3) is
known, and no proof of its non-existence has been proposed, leaving open the
question of whether P = NP?. The Satisfiability problem has important prac-
tical applications. For instance, in circuit design problems, a circuit that always
produces an output of 0, can be eliminated from a larger circuit. This would
reduce the number of gates needed to implement the circuit, thereby reducing
cost. This problem naturally motivates the question of whether a given for-
mula is satisfiable. Further, all the problems in the class NP can be reduced in
polynomial-time to the Satisfiability problem. There are many practically im-
portant problems in this class. Therefore, a fast algorithm for SAT can also help
to solve these problems efficiently. However, the existence of polynomial-time
algorithms for NP-complete problems is believed to be unlikely. Consequently,
current research on SAT is focused on obtaining non-trivial exponential upper-
bounds for SAT algorithms. For example, an algorithm running in O(2n/r) for
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instance, with large r could prove useful in solving many practical problems.
Current research on SAT is focused on obtaining non-trivial exponential upper-
bounds for SAT algorithms.

Algorithms for SAT. SAT algorithms are classified into Splitting algorithms

and Local Search algorithms [DHIV01]. Splitting algorithms reduce the input
formula into polynomially many formulae. The two families of Splitting algo-
rithms are DPLL-like algorithms and PPSZ-like algorithms. DPLL-like algo-

rithms [DP60, DLL62] replace the input formula F by two formulas F [x] and
F [¬x]. This is done recursively. Using this technique, Monien and Speckenmeyer
[MS85] gave the first non-trivial upper bounds for k-SAT. PPSZ-like algorithms

[PPZ97, PPSZ98] use a different approach: variables are assigned values in a ran-
dom order in the hope that the value of many variables can be obtained from the
values of variables chosen prior to it. Local Search algorithms work by starting
with an initial assignment and modifying it to come closer to a satisfying assign-
ment. If, after a certain number of steps no satisfying assignment is found, the
algorithm starts again with a new initial assignment. After repeating a certain
number of times, if the algorithm does not find a satisfying assignment, it halts
reporting ”Unsatisfiable”. Greedy algorithms [KP92] may be used to modify the
current assignment in Local Search algorithms. These algorithms change the cur-
rent assignment such that some function of the assignment increases as much as
possible. Random walk algorithms [Pap91], on the other hand, modify the cur-
rent assignment by flipping the value of a variable at random from an unsatisfied
clause. 2-SAT can be solved in expected polynomial-time by a random walk al-
gorithm [Pap91]. [Sch99] shows that k-SAT can be solved in time (2− 2/k)n up
to a polynomial factor. From the literature [Sch99, PPZ97, PPSZ98], it is clear
that the current asymptotic performance of the local search algorithms is better
than PPSZ-like algorithms.

Our Work and Results. Our main motivation is to explore further directions
towards improving the performance of PPSZ-like algorithms. While the algo-
rithm in [PPZ97] computes the values of variables in a random order, in the
process shrinking the search space based on the formula, we observe that vari-
able sets which have a special property with respect to the formula naturally
shrink the search space. For example, if I is a set of variables in which no two
of them occur in a clause, then the values to the variables of I can be com-
puted very easily given an assignment to the variables outside I. Consequently,
we could spend our effort on trying to find an assignment to variables outside
I that can be extended to variables of I to obtain a satisfying assignment for
the formula. This is precisely the approach of this paper. We first consider the
brute force algorithm, and then modify the Satisfiability Coding Lemma, and
Schöning’s randomized algorithm to obtain an assignment to variables outside
I. While we have not obtained an improved algorithm in general, we observe
that our algorithms guarantee to be faster in the case when I is large enough in
a given formula. On the other hand, it is also quite easy to construct formulae in
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which I is very small in which case the performance is the same as the algorithm
in [PPZ97]. So the motivation for our work is our conjecture that random satisfi-
able formulae have large independent sets. This is reiterated by the benchmarks
for satsolvers which have independent sets of size n

4 .
Independent set like structures in the formula have been used to obtain better

algorithms for 3-sat. In particular, the paper by [SSWH02] uses a set of disjoint
clauses to identify the initial starting point of Schöning’s randomized algorithm
[Sch99]. Indeed the disjoint clauses form an independent set in the set of clauses.
On the other hand, we use independent sets of variables in our attempt to im-
prove the performance of algorithms for k-sat based on the Satisfiability Coding
Lemma [PPZ97, PPSZ98].

Roadmap. Section 2 presents the preliminaries, the brute force algorithm in Sec-
tion 2.1. The modified Satisfiability Coding Lemma is presented in Section 3, and
the algorithm based on it is presented and analyzed in Section 4. The random walk
algorithm is presented in Section 5. A discussion in Section 6, and a construction
of formulae with small independent sets in Section 6.1 concludes the paper.

2 Preliminaries

We have used the usual notions associated with the k-SAT problem. The reader
is referred to [DHIV01] for this. Let V denote the set of variables in an instance
F of k-SAT. An Independent Set I ⊆ V , is a set of variables such that each
clause contains at most one element of the set. In this paper, we consider in-
dependent sets that are maximal with respect to inclusion. I denotes a fixed
maximal independent set of cardinality i in F . Given an assignment a′ to the
variables of V − I, we can check whether it can be extended to a satisfying as-
signment in polynomial time: when we substitute a′ into the formula, then we
get a conjunction of literals. Every variable in this conjunction is an element
of I. Further, testing if a conjunction of literals is satisfiable is a trivial issue.
A truth assignment to the variables of V − I is said to be extensible if there is
a truth assignment to the elements of I such that the resulting assignment to
{x1, . . . , xn} is a satisfying assignment. An assignment that cannot be extended
to a satisfying assignment is called a non-extensible assignment. An extensible
assignment is said to be isolated along a direction j, xj �∈ I, if flipping the value
of xj results in a non-extensible assignment.

Isolated Extensible Assignments. For a truth assignment a, ai is said to
be critical for a clause C if the corresponding literal is the only true literal
in C under the assignment a. Without loss of generality, let us consider the
variables of V − I to have indices from [n − i] = {1, . . . n − i}. Further, for an
assignment a′ to the variables outside I, F (a′) is a conjunction of literals from I.
Let b = b1 . . . bn−i be an extensible assignment that is isolated along directions
indexed by the elements of J ⊆ [n − i]. Let b′ be the assignment obtained by
flipping br, r ∈ J . b′ is non-extensible for one of the following two reasons:
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1. The formula is falsified by b′ as there is a clause with all its variables from
V − I, and br is critical for this clause. An assignment is said to be easy

isolated along xr if this property is satisfied.
2. There exists an xl ∈ I, two clauses C1, C2 such that xl ∈ C1, xr,¬xl ∈

C2, and only xl occurs in F (b), but both xl and ¬xl occurs in F (b′). An
assignment that is not easy isolated along xr is said to be hard isolated along
xr if this condition is satisfied. We refer to the two clauses C1 and C2 as
falsifying clauses for b along direction r. We refer to them as falsifying clauses,
leaving out b and r, when there is no ambiguity. Clearly, if an extensible
assignment is hard isolated along xr, there exist two falsifying clauses.

2.1 The Brute Force Approach

The idea is to find the largest independent set I, and search through all possible
assignments to V − I. If an assignment is extensible, we report that F is satis-
fiable, otherwise report unsatisfiable when all assignments to V − I have been
tried. This algorithm runs in O(2n−ipoly(|F |)). While finding a large enough
independent set is a problem by itself, we propose to find the maximum inde-
pendent set by using the algorithm due to Beigel [Bei99] that runs quite effi-
ciently. The other approach is to permute the variables at random and consider
the independent set obtained by considering variables all of whose neighbours
occur to their left in the random permutation. Two variables are said to be
neighbours, if they occur together in a clause. This approach yields an inde-
pendent set whose expected size is n

∆+1 , where each variable has at most ∆
neighbours.

3 A Variant of Satisfiability Coding Lemma

In the Section 2.1 we have observed a simple brute force algorithm that finds
extensible solutions given an independent set I. We now improve this brute force
algorithm by modifying the satisfiability coding lemma suitably. The approach
that we take is similar to the approach in [PPZ97]. We first consider the issue
of encoding isolated extensible solutions and bound the expected length of an
encoding. We then show that this encoding process is reversible and it does
prune our search space yielding a randomized algorithm that performs better
than the brute force approach in Section 2.1. However, this does not better the
performance of [PPZ97] unless I is a sufficiently large set.

Encoding. We consider the set of j-isolated extensible solutions for a fixed inde-
pendent set of variables I. Let x1, . . . , xn−i be the variables of V − I in a k-SAT
formula. Let σ be a permutation on the set {1, . . . , n − i}. Let A = a1 . . . an−i

be a binary string visualized as an assignment of ar to xr, 1 ≤ r ≤ n− i. Let Aσ

denote the string aσ(n−i)aσ(n−i−1) . . . aσ(1). In other words, Aσ is a permutation
of A, according to σ. From A and σ, we construct an encoding E(A, σ) as follows:
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E(A, σ) is the empty string.

for(r = n − i; r ≥ 1; r −−)
begin

if A is isolated along σ(r)
AND all other variables in a critical clause for xσ(r)

occur to the left of xσ(r) in Aσ

OR the variables �∈ I in two falsifying clauses occur to

the left of xσ(r) in Aσ

then do not add aσ(r) to E(A, σ).
else

add aσ(r) to E(A, σ).
end

The operation of adding a bit to E(A, σ) is equivalent to concatenating to
the right end. The bits of this string are assumed to be indexed from left to right
starting with 1 for the leftmost bit, and using consecutive indices. The output of
the loop is E(A, σ). Another point of view on E(A, σ) is that it is obtained from
Aσ by deleting some bits which can be computed from previous information in
Aσ. Obviously, its length cannot exceed n − i.

Reconstruction. Given a k-SAT formula F , an independent set I, a bit string
E, and a permutation σ, we find a bit string A such that E(A, σ) = E, if such
an A exists. To obtain A we find Aσ = aσ(n−i)aσ(n−i−1) . . . aσ(1). The bit string
E is considered from the leftmost bit. Each bit of E is assigned to at most one
corresponding bit of Aσ. At each step the value of a bit of Aσ is inferred. It is
inferred either by substituting the previously computed bits into the formula, or
the current bit of E is assigned to Aσ.

Consider the case when Aσ has been computed up to the r+1-th bit, n−i−1 ≥
r ≥ 1. We substitute this partial assignment into F and consider the resulting
formula. There are three cases:

xσ(r) can be inferred from the previous values: This can happen in two ways.
The first, when xσ(r) occurs as a single literal. This means that there is a cor-
responding critical clause in which all other literals have been set to 0. xσ(r) is
set appropriately to make the literal true. The second case is when a variable
x ∈ I occurs as (x)(¬x ∨ y), where y is a literal of xσ(r). In this case, the value
assigned to xσ(r) is inferred from the value that makes y true.

xσ(r) takes its value from E: This happens when xσ(r) does not satisfy either
of the two conditions mentioned above. In this case, xσ(r) is to be assigned the
current bit of E. If all the bits of E have been used up then halt reporting failure.
At each step of the reconstruction, we keep track of whether a variable and its
complement occur as single clauses. If this happens, we halt reporting failure.
If Aσ is computed successfully, then it means that we have found an extensible
assignment.
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3.1 Quality of the Encoding

Here we discuss the expected length of E(A, σ) when σ is chosen from a class
of distributions on Sn, the set of permutations of {1, . . . , n}. These distributions
are characterized by γ and satisfy the following property

| Prπ∈F (min{π(X)} = π(x)) −
1

|X|
|≤

γ

|X|
(1)

Here, X ⊆ {1, . . . , n} and π(X) is the image of the set X under a permutation
π. Clearly, the required probability is 1

|X| when π is chosen uniformly from the

set of all permutations. The goal of identifying a smaller family of permutations
that guarantee this property is well motivated and is studied by Charikar et.
al in [MBFM00]. For each γ, Dγ is a probability distribution on Sn and Dγ(σ)
denotes probability of choosing σ in the distribution Dγ .

σ Chosen from Dγ. We now compute the average length of E(A, σ) averaged
over all σ ∈ Dγ . Clearly, the only directions that get eliminated are those along
which A is either easy isolated or hard isolated. Let us assume that A is an
extensible solution, easy isolated along je directions, and hard isolated along jh

directions. For a direction r along which A is easy isolated, we lower bound the
probability that ar is eliminated in the encoding of A with a randomly chosen
permutation.

Since A is easy isolated along r, there is a corresponding critical clause all
of whose variables are from V − I. ar will be eliminated if all the k − 1 literals
in the critical clause occur to the left in a randomly chosen permutation. This
event happens with probability at least 1−γ

k . It follows from the linearity of ex-
pectation that, for an A which is easy isolated along je directions, the expected

number of variables eliminated is at least je(1−γ)
k . Similarly a direction r, along

which A is hard isolated, will be eliminated if all the variables belonging to V −I
from corresponding falsifying clauses occur to the left of xr in a randomly cho-
sen permutation. The number of such variables from two falsifying clauses is at
most 2k − 3. Consequently, this event happens with probability at least 1−γ

2k−2 .
By linearity of expectation, the expected number of hard isolated directions that

get eliminated is at least jh(1−γ)
2k−2 . Therefore, the expected value of E(A, σ) is at

most n − i − (1 − γ)( je

k + jh

2k−2 ).

Existence of a Good Permutation. We now use the above argument to show
that there is a permutation σ ∈ Dγ for which the average length E(A, σ), over
all extensible solutions A isolated along j = je + jh directions, is upper bounded
by n − i − (1 − γ)( je

k + jh

2k−2 ). For this we consider the following average,

∑

σ

Dγ(σ)
∑

A∈J

1

|J |
E(A, σ) =

∑

A∈J

1

|J |

∑

σ

Dγ(σ)E(A, σ) (2)

This is upper bounded by n − i − (1 − γ)( je

k + jh

2k−2 ) since we know from

the above calculation that
∑

σ Dγ(σ)E(A, σ) ≤ n − i − (1 − γ)( je

k + jh

2k−2 ).
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It now follows by the pigeon hole principle that for some σ,
∑

A∈J
1
|J|E(A, σ) ≤

n − i − (1 − γ)( je

k + jh

2k−2 ). We state these bounds in the following theorem.

Theorem 1. Let A be an extensible solution which is easy isolated along je

directions, and hard isolated along jh directions. The expected value of E(A, σ)
is at most n − i − (1 − γ)( je

k + jh

2k−2 ). Consequently, for J , the set of extensible

solutions, easy isolated along j directions,there is a permutation σ ∈ Dγ such

that
∑

A∈J
1
|J|E(A, σ) ≤ n − i − (1 − γ)( je

k + jh

2k−2 ). Here i is the size of an

independent set I.

4 Algorithm to Find Satisfying Assignments

For a k-CNF |F | with an independent set I, we use the result in Theorem 1 to
design a randomized algorithm. Further, we set γ = 0, that is we use a family
of permutations that guarantees exact min-wise independence. From now on,
γ = 0. The effectiveness of this algorithm over the one presented in [PPZ97]
depends on how large an independent set there is in the formula, and how much
time is needed to find a reasonably large independent set. The algorithm that we
present here, is quite similar to the randomized algorithm presented in [PPZ97].
In the description below, the word forced is a property of a variable whose value
is determined by the values the previous variables. For example, a variable xr is
forced if it occurs as a single literal in F (a1, . . . , ar−1). Here a1, . . . , ar−1 are the
assignments to the variables x1, . . . , xr−1, respectively. xr could also be forced if
two falsifying clauses occur in F (a1, . . . , ar−1).

Find an independent set I

Repeat n22(n−i)(1− 1
2k−2 ) times

While there is an unassigned variable in V − I
select an unassigned variable y from V − I at random

If y is forced, then set y as per the forcing

Else set y to true or false at random

end while

If the assignment can be extended

then output the satisfying assignment

End Repeat

We state the following lemma, a special case of the isoperimetric inequality,
which is used to prove our main theorem. We present a complete proof
here.

Lemma 1. Let S ⊆ {0, 1}n, be a non-empty set. For x ∈ S, define In(x) be

the number of distance-1 neighbours of x that are not in S. Define value(x) =
2(In(x)−n). Then, Σx∈Svalue(x) ≥ 1.

Proof. The proof is by induction on n. The base case is when n = 1. If I1(x) = 0,
then we observe that Σx∈Svalue(x) = 1. If I1(x) = 1, Σx∈Svalue(x) = 1.
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For n > 1, and i ∈ {0, 1}, let Si be a subset of {0, 1}n−1 such that for each
x ∈ Si, xi ∈ S. Now we consider two cases:

Case I: If one of the two sets is empty, then we have a direction along which each
element of S is isolated. Let us consider S′ to be a subset of {0, 1}n−1 obtained
by projecting along the rightmost bit. By induction, Σx∈S′value(x) ≥ 1. That
is, Σx∈S′2In−1(x)−(n−1) ≥ 1. Clearly, the number of directions along which an
x ∈ S is isolated in {0, 1}n is one more than the number of directions along
which it’s projection(along the rightmost bit) is isolated in {0, 1}n−1. Conse-
quently, Σx∈S′2In−1(x)+1−(n−1) is exactly Σx∈S2In(x)−n. Hence the induction
hypothesis is proved in this case.

Case II: If both Si are non-empty. Then, by induction, Σx∈Si
value(x) ≥ 1.

Observe that, here value(x) is defined with respect to Si, for each i. Due of the
induction hypothesis,

2 ≤ Σx∈S0
2In−1(x)−(n−1) + Σx∈S1

2In−1(x)−(n−1)

≤ 2Σx∈S0
2In(x0)−n + 2Σx∈S1

2In(x1)−n (3)

= 2Σx∈S2In(x)−n

The equation 3 follows from the previous equation due to the fact that In−1(x) ≤
In(xi), i ∈ {0, 1}. The induction hypothesis holds in this case too, and hence the
lemma is proved. ��

The following theorem is proved using the Lemma 1 along the lines of a similar
theorem in [PPZ97].

Theorem 2. Let I be an independent set of variables in F , a satisfiable instance

of k-SAT. The randomized algorithm in Section 4 finds a satisfying assignment

with very high probability in time O(n2|F |2(n−i)(1− 1
2k−2 )).

Proof. Let S denote the set of extensible assignments. Let us assume that x is
a j-isolated extensible solution of F . Among these let je(x) and jh(x) be easy
and hard isolated directions, respectively. The probability that x is output by
the algorithm is the sum over all d ≥ 0, probability that for a randomly chosen
permutation, d directions are forced, and the remaining directions are chosen
correctly. This is at least the probability that for a randomly chosen permuta-
tion, at least je

k + jh

2k−2 directions are forced, and the remaining directions are

guessed correctly. Recall that je

k + jh

2k−2 is a lower bound expected number of
directions that are eliminated by the process of encoding x. The probability of
finding x is dependent on two events, one is to find a permutation that elim-
inates je

k + jh

2k−2 directions, and the second is to make the correct choices on
the remaining values. We now lower bound this probability by estimating the
probability of finding a right permutation, and then conditioned on this event,
estimate the probability of making the correct choices.
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Probability of Finding a Right Permutation. Recall that a right permutation is
one using which the process of encoding x eliminates at least je

k + jh

2k−2 directions.

We can now partition the permutation into the following sets: for r < je

k + jh

2k−2 ,
Pr consists of those permutation that eliminate r variables, and Pav consists of
those permutations that eliminate at least je

k + jh

2k−2 variables. The number of
sets in this partition is at most n−i. Therefore, by the pigeon hole principle, one
of these sets must have at least 1

n−i of the permutations. Following the argument

in [PPZ97], Pav has at least 1
n−i of the permutations. Therefore, the probability

of picking the right permutation is at least 1
n−i > 1

n .

Probability of Making the Right Choices on the Unforced Bits. Conditioned on
the fact that a right permutation is chosen, we now estimate the probability that
the right choices are made on the unforced bits so that we get x. The number of
unforced bits is at most n− i− je

k − jh

2k−2 . The probability of making the correct

choices is at least 2−(n−i− je
k
−

jh
2k−2 ).

Therefore, the probability of picking x is at least 1
n2−(n−i− je

k
−

jh
2k−2 ). The prob-

ability that the algorithm outputs some solution of F is given by the follow-
ing:

Σx∈S Pr(x is output) ≥ Σx∈S
1

n
2−(n−i−

je(x)
k

−
jh(x)

2k−2 )

≥
1

n
2−(n−i)(1− 1

2k−2 )Σx∈S2−(n−i)+I(x)

≥
1

n
2−(n−i)(1− 1

2k−2 ) (4)

The last inequality follows from Lemma 1. The repetition of the while loop

n22(n−i)(1− 1
2k−2 ) increases the probability of finding a satisfying assignment to

a constant. Hence the theorem is proved. ��

Comparison with the Randomized Algorithm in [PPZ97]. The random-
ized algorithm presented in [PPZ97] has a running time of O(n2|F |2n−n/k), and

ours has a running time of O(n2|F |2(n−i)(1− 1
2k−2 )). Our algorithm does better

than the algorithm in [PPZ97] when (n− i)(1− 1
2k−2 ) < n(1− 1

k ). This happens

when i > n(k−2)
k(2k−3) . For k = 3, our algorithm does better when i > n

9 .

5 Extensible Solutions via Local Search

In this section, we analyze a modification of Schöning’s local search algorithm
to find an extensible solution. As usual, let I denote an independent set of
cardinality i. The algorithm is as follows:
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Let I be a maximal independent set of variables.

For numtries times

Select a random partial assignment a ∈ {0, 1}n−i

Repeat 3n times

Consider F (a) by substituting partial assignment a.
if (C(a) = 0 for some C ∈ F)

Randomly, flip the value of one of the literals from C
else if (C1(a) = x and C2(a) = ¬x for C1, C2 ∈ F, x ∈ I)

Randomly, flip one of the variables from C1 ∪ C2 − x
else

Extend a to a satisfying assignment s of F; return s;
EndRepeat

EndFor

Return ‘unsatisfiable’

Let a∗ be an extensible assignment. We lower bound the probability that the
above algorithm finds a∗, or some other extensible assignment. Let a ∈ {0, 1}n−i

be the initial random assignment, at a Hamming distance of j from a∗. To an-
alyze the algorithm, we consider a walk on a Markov Chain, whose states are
labelled {0, 1, 2, ..., n− i}. Each state represents the Hamming distance between
the current assignment and a∗. Initially, the walk starts at state j. We now
observe that at each step of the algorithm, the probability of moving one step
closer to the state 0 is at least 1

2k−2 . This is easy to see, as we know that if
a is not extensible, then either there is a clause C, var(C) ⊆ V − I, such that
C(a) = 0, or there is an x ∈ I, and two clauses C1, C2 such that C1(a) = x
and C2(a) = ¬x. In the former case, the algorithm moves to an assignment
with a lesser Hamming distance from a∗ with probability at least 1

k , and in
the latter, with probability at least 1

2k−2 . The reasoning is that the values as-
signed to the variables in C by a and a∗ have to differ at at least one variable.
Similarly, the values assigned to variables in C1 ∪ C2 − x by a and a∗ must
differ at at least one variable. Consequently, the size of C and C1 ∪ C2 − x
give the claimed probabilities. The probability of finding a∗ from the chosen a
(Hamming distance between a and a∗ is j) in one iteration of the outer loop
is at least the probability that the process moves from state j to state 0. This
probability, denoted by qj , is at least ( 1

2k−3 )j . See [Sch99] for the derivation of
this probability. Further, the success probability for one iteration of the outer
loop is

p ≥ ( 1
2 )n−i

∑n−i
j=0

(
n−i

j

)
( 1
2k−3 )j = (1

2 (1 + 1
2k−3 ))n−i

1/4 3/4
n−ij j+10 j−1

Fig. 1. Random Walk: Analysis of Local Search with Independent Set for 3-SAT
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For k = 3, if the size of the independent set is high ( i ≥ 0.3n ), then the
algorithm works better than Schöning’s randomized algorithm.

6 Discussion

In this paper, we have introduced the notion of an independent set of variables
and use maximum independent sets in algorithms to solve k-SAT. The prob-
lem of finding a maximum independent set is a terribly hard problem. Even to
find a good approximate solution in polynomial time is equally hard. However,
when we permit exponential running time, finding a maximum independent set
in an undirected graph has a provably better running time than the best known
algorithms for k-SAT. The algorithm to find a maximum independent set due
to [Bei99] runs in time 2.290n which is approximately 1.2226n. On the other
hand, one of the best algorithms for 3-SAT is randomized and runs in time
1.3302n [SSWH02]. Based on this observation, our approach spends some of the
exponential time finding a maximum independent set, and then uses it to find
a satisfying assignment. This approach is faster than [PPZ97, Sch99, SSWH02]
only if the maximum independent set is sufficiently large. While there are for-
mulae with very small independent sets, as we show below, an important direc-
tion of research is to explore the size of independent sets in random satisfiable
formulae.

6.1 Formulae with Small Independent Sets

Here we construct formulae which have a small maximum independent set, and
the number of clauses is also small, contradicting the intuition that small number
of clauses mean large independent sets. Consider the following construction for
a formula with n variables, and a parameter 1 ≤ b ≤ n:

Step 1: Partition the variables into sets of b variables. There are n/b such sets.
Step 2: For each set of b variables, construct

(
b
3

)
clauses made up of variables

of same parity.

This formula is trivially satisfiable. The formula has
(

b
3

)
n
b clauses, and the size

of any independent set is n
b . The following table shows the sample values for

different values of b.

b no. of clauses ind. set size
9 9.3n n

9

8 7n n
8
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