
THE HQDGKIN-HUXLEY MODEL
OF ACTION

POTENTIAL GENERATION

The vast majority of nerve cells generate a series of brief voltage pulses in response to
vigorous input. These pulses, also referred to as action potentials or spikes, originate at or
close to the cell body, and propagate down the axon at constant velocity and amplitude.
Fig. 6.1 shows the shape of the action potential from a number of different neuronal and
nonneuronal preparations. Action potentials come in a variety of shapes; common to all
is the all-or-none depolarization of the membrane beyond 0. That is, if the voltage fails
to exceed a particular threshold value, no spike is initiated and the potential returns to its
baseline level. If the voltage threshold is exceeded, the membrane executes a stereotyped
voltage trajectory that reflects membrane properties and not the input. As evident in Fig. 6.1,
the shape of the action potential can vary enormously from cell type to cell type.

When inserting an electrode into a brain, the small all-or-none electrical events one
observes extracellularly are usually due to spikes that are initiated close to the cell body
and that propagate along the axons. When measuring the electrical potential across the
membrane, these spikes peak between +10 and +30 mV and are over (depending on the
temperature) within 1 or 2 msec. Other all-or-none events, such as the complex spikes in
cerebellar Purkinje cells (Fig. 6.1G) or bursting pyramidal cells in cortex (Fig. 6.1H and
Fig. 16.1C), show a more complex wave form with one or more fast spikes superimposed
onto an underlying, much slower depolarization. Finally, under certain conditions, the
dendritic membrane can also generate all-or-none events (Fig. 6.1H) that are much slower
than somatic spikes, usually on the order to 50-100 msec or longer. We will treat these
events and their possible significance in Chap. 19.

Only a small fraction of all neurons is unable—under physiological conditions—to
generate action potentials, making exclusive use of graded signals. Examples of such
nonspiking cells, usually spatially compact, can be found in the distal retina (e.g., bipolar,
horizontal, and certain types of amacrine cells) and many neurons in the sensory-motor
pathway of invertebrates (Roberts and Bush, 1981). They appear to be absent from cortex,
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Fig. 6.1 ACTION POTENTIALS OF THE WORLD Action potentials in different invertebrate and verte-
brate preparations. Common to all is a threshold below which no impulse is initiated, and a stereotypical
shape that depends only on intrinsic membrane properties and not on the type or the duration of the
input. (A) Giant squid axon at 16° C. Reprinted by permission from Baker, Hodgkin, and Shaw (1962).
(B) Axonal spike from the node of Ranvier in a myelinated frog fiber at 22° C. Reprinted by permission
from Dodge (1963). (C) Cat visual cortex at 37° C. Unpublished data from J. Allison, printed with
permission. (D) Sheep heart Purkinje fiber at 10° C. Reprinted by permission from Weidmann (1956).
(E) Patch-clamp recording from a rabbit retinal ganglion cell at 37° C. Unpublished data from F. Amthor,
printed with permission. (F) Layer 5 pyramidal cell in the rat at room temperatures. Simultaneous
recordings from the soma and the apical trunk. Reprinted by permission from Stuart and Sakmann
(1994). (G) A complex spike—consisting of a large EPSP superimposed onto a slow dendritic calcium
spike and several fast somatic sodium spikes—from a Purkinje cell body in the rat cerebellum at 36° C.
Unpublished data from D. Jaeger, printed with permission. (H) Layer 5 pyramidal cell in the rat at room
temperature. Three dendritic voltage traces in response to three current steps of different amplitudes
reveal the all-or-none character of this slow event. Notice the fast superimposed spikes. Reprinted by
permission from Kim and Connors (1993). (I) Cell body of a projection neuron in the antennal lobe in
the locust at 23° C. Unpublished data from G. Laurent, printed with permission.

thalamus, cerebellum, and associated structures (although it is difficult, on a priori grounds,
to completely rule out their existence).

Action potentials are such a dominant feature of the nervous system that for a considerable
amount of time it was widely held—and still is in parts of the theoretical community— that
all neuronal computations only involve these all-or-none events. This belief provided much
of the impetus behind the neural network models that originated in the late 1930s and early
1940s (Rashevsky, 1938; McCullough and Pitts, 1943).
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The ionic mechanisms underlying the initiation and propagation of action potentials in
nervous tissue were elucidated in the squid giant axon by a number of workers, most notably
by Hodgkin and Huxley in Cambridge, England (1952a,b,c,d). Together with Eccles, they
shared the 1963 Nobel prize in physiology and medicine. (For a historical account see
Hodgkin, 1976.) Their quantitative model (Hodgkin and Huxley, 1952d) represents one of
the high points of cellular biophysics and has been extremely influential in terms of enabling
a large class of quite diverse membrane phenomena to be analyzed and modeled in terms
of simple underlying variables. This is all the more surprising since the kinetic description
of membrane permeability changes within the framework of the Hodgkin-Huxely model
was achieved without any knowledge of the underlying ionic channels.

A large number of excellent papers and books describing in great detail various aspects
of the Hodgkin-Huxley model are available today. Nothing matches the monograph by
Jack, Noble, and Tsien (1975) for its 200-page extended coverage of various analytical
and numerical approaches to understand all relevant aspects of initiation and conduction
of action potentials. Cronin (1987) presents a mathematical account of the more formal
aspects of Hodgkin and Huxley's model as well as related models, while Scott (1975)
pays particular attention to questions of interest to physicists and applied mathematicians.
The books by Hille (1992), Johnston and Wu (1995) and Weiss (1996) provide up-to-date
and very readable accounts of the biophysical mechanisms underlying action potentials in
neuronal tissues. The edited volume by Waxman, Kocsis, and Stys (1995) concentrates on
the morphology and the pathophysiology of myelinated and unmyelinated axons.

Because the biophysical mechanisms underlying action potential generation in the cell
body and axons of both invertebrates and vertebrates can be understood and modeled by
the formalism Hodgkin and Huxley introduced 40 years ago, it becomes imperative to
understand their model and its underlying assumptions. We will strive in this chapter to
give an account of those properties of the Hodgkin-Huxley model that are of greatest
relevance to understanding the initiation of the action potential. We will also discuss the
propagation of spikes along unmyelinated and myelinated fibers. Chapter 9 extends the
Hodgkin-Huxley framework to the plethora of other currents described since their days.

6.1 Basic Assumptions

Hodgkin and Huxley carried out their analysis in the giant axon of the squid. With its half-
millimeter diameter, this fiber is a leviathan among axons. (The typical axon in cortex has a
diameter more than 1000 times smaller; Braitenberg and Schiiz, 1991.) In order to eliminate
the complexity introduced by the distributed nature of the cable, a highly conductive axial
wire was inserted inside the wke. This so-called space clamp keeps the potential along the
entire axon spatially uniform, similar to the situation occurring in a patch of membrane. This,
together with voltage clamping the membrane and the usage of pharmacological agents to
block various currents, enabled Hodgkin and Huxley to dissect the membrane current into
its constitutive components. The total membrane current is the sum of the ionic currents
and the capacitive current,

(6.1)

With the help of these tools, Hodgkin and Huxley (1952a,b,c) carried out a large number of
experiments, which lead them to postulate the following phenomenological model of the
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Fig. 6.2 ELECTRICAL CIRCUIT
FOR A PATCH OF SQUID AXON
Hodgkin and Huxley modeled the
membrane of the squid axon us-
ing four parallel branches: two
passive ones (membrane capaci-
tance Cm and the leak conductance
Gm = \/Rm) and two time- and
voltage-dependent ones represent-
ing the sodium and potassium con-
ductances.

events underlying the generation of the action potential in the squid giant axon (Fig. 6.2;
Hodgkin and Huxley, 1952d).

1. The action potential involves two major voltage-dependent ionic conductances, a sodium
conductance GNa and a potassium conductance GK- They are independent from each
other. A third, smaller so-called "leak" conductance (which we term Gm) does not depend
on the membrane potential. The total ionic current flowing is the sum of a sodium current,
a potassium current, and the leak current:

(6.2)

2. The individual ionic currents /,(£) are linearly related to the driving potential via
Ohm's law,

(6.3)

where the ionic reversal potential £,• is given by Nernst's equation for the appropriate
ionic species. Depending on the balance between the concentration difference of the
ions and the electrical field across the membrane separating the intracellular cytoplasm
from the extracellular milieu, each ionic species has such an associated ionic battery (see
Eq. 4.3). Conceptually, we can use the equivalent circuit shown in Fig. 6.2 to describe
the axonal membrane.

3. Each of the two ionic conductances is expressed as a maximum conductance, G^& and
GK, multiplied by a numerical coefficient representing the fraction of the maximum
conductance actually open. These numbers are functions of one or more fictive gating
particles Hodgkin and Huxley introduced to describe the dynamics of the conductances.
In their original model, they talked about activating and inactivating gating particles.
Each gating particle can be in one of two possible states, open or close, depending on time
and on the membrane potential. In order for the conductance to open, all of these gating
particles must be open simultaneously. The entire kinetic properties of their model are
contained in these variables. We will consider the physical and molecular interpretation
of these gating particles in terms of numerous all-or-none microscopic ionic channels in
Chap. 8.
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6.2 Activation and Inactivation States

Let us specify how these activation and inactivation states determine the two ionic currents.
This is important, since the vast majority of state-of-the-art ionic models is formulated in
terms of such particles.

6.2.1 Potassium Current IK
Hodgkin and Huxley (1952d) model the potassium current as

(6-4)

where the maximal conductance GK = 36 mS/cm2 and the potassium battery is EK =
— 12 mV relative to the resting potential of the axon. n describes the state of a fictional
activation particle and is a dimensionless number between 0 and 1. Note that with today's
physiological conventions, /R as outward current is always positive (for V > £R; see
Fig. 6.5).

Chapter 8 treats the underlying microscopic and stochastic nature associated with the
macroscopic and deterministic current. Let us for now develop our intuition by assuming
that the probability of finding one activation particle in its permissive or open state is n (and
it will be with probability 1 — n in its nonpermissive or closed state where no current flows
through the conductance). Equation 6.4 states that in order for the channel to be open, the
four gating particles must simultaneously be in their open state. We can also think of n as
the proportion of particles in their permissive state; potassium current can only flow if four
particles are in their permissive state.

If we assume that only these two states exist (for a single particle) and that the transition
from one to the other is governed by first-order kinetics, we can write the following reaction
scheme:

(6-5)

where «„ is a voltage-dependent rate constant (in units of I/sec), specifying how many
transitions occur between the closed and the open states and fln expresses the number of
transitions from the open to the closed states (in units of I/sec). Mathematically, this scheme
corresponds to a first-order differential equation,

(6.6)

The key to Hodgkin and Huxley's model—as well as the most demanding part of their
investigation—was the quantitative description of the voltage dependency of the rate
constants. Instead of using rate constants an and /3n, we can reexpress Eq. 6.6 in terms
of a voltage-dependent time constant rn(V) and a steady-state value n^V) with

(6.7)

where

(6.8)

and
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(6.9)

Both descriptions, either in terms of rate constants an and fln or in terms of a time constant
rn and a steady-state variable «oo» are equivalent. While Hodgkin and Huxely used the
former, we will use the latter, due to its simpler physical interpretation.

One of the most striking properties of the squid membrane is the steepness of the
relation between conductance and membrane potential. Below about 20 mV, the steady-
state potassium membrane conductance GK increases e-fold by varying V by 4.8 mV,
while the voltage sensitivity of the sodium conductance is even higher (an e-fold change for
every 3.9 mV). For higher levels of depolarization, saturation in the membrane conductance
sets in (Hodgkin and Huxley, 1952a). This steep relationship must be reflected in the voltage
dependency of the rate constants. Hodgkin and Huxley (1952d) approximated the voltage
dependencies of the rate constants by

(6.10)

and

(6.11)

where V is the membrane potential relative to the axon's resting potential in units of
millivolt. Figure 6.3 shows the voltage dependency of the associated time constant and
the steady-state value of the potassium activation variable. While rn has a bell-shaped
dependency, «<» is a monotonically increasing function of the membrane potential. The
curve relating the steady-state potassium conductance to the membrane potential is an
even steeper function, given the fourth-power relationship between GK and n. This is a
hallmark of almost all ionic conductances: depolarizing the membrane potential increases
its effective conductance.' One of the few exceptions is the appropriately named anomalous
rectifier current /AR (frequently also termed inward rectifier), which turns on with increasing
membrane hyperpolarization (Spain, Schwindt, and Crill, 1987).

The fraction of the steady-state potassium conductance open at any particular voltage
V, that is, for / -> oo, is identical to «oo(^)4. At Vrest this number is very small,
noo(0)4 = 0.01, that is, only about 1% of the total potassium conductance is activated.
Using the voltage-clamp setup, we now move the membrane potential as rapidly as possible
to V and clamp it there. The evolution of the potassium conductance is dictated by the
differential Eq. 6.7,

(6.12)

where «o is the initial value of the potassium activation, «o = «oo(0) = 0.32, and «<*>
its final value, n^ = n^V). The time course of any one activation variable follows an
exponential, a reflection of the underlying assumption of a first-order kinetic scheme. The
time course of the fourth power of n(t) is plotted on the right-hand side of Fig. 6.4, following
a sudden shift in the membrane potential, from rest to the various voltage values indicated.
Superimposed are the experimentally measured values of the potassium conductance. It
is remarkable how well the points fall onto the curve. Upon stepping back to the original
membrane potential, n slowly relaxes back to its original low value.

These rate constants have a probabilistic interpretation, covered in more depth in Chap. 8.

1. Whether or not the associated ionic current also increases depends on the relevant ionic reversal potential (Eq. 6.3).
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Fig. 6.3 VOLTAGE DEPENDENCY OF THE GATING PARTICLES Time constants (A) and steady-
state activation and inactivation (B) as a function of the relative membrane potential V for sodium
activation m (solid line) and inactivation h (long dashed line) and potassium activation n (short,
dashed line). The steady-state sodium inactivation hx is a monotonically decreasing function of V,
while the activation variables nx and m^ increase with the membrane voltage. Activation of the
sodium and potassium conductances is a much steeper function of the voltage, due to the power-law
relationship between the activation variables and the conductances. Around rest, Gfla increases e-fold
for every 3.9 mV and GR for every 4.8 mV. Activating the sodium conductance occurs approximately
10 times faster than inactivating sodium or activating the potassium conductance. The time constants
are slowest around the resting potential.

6.2.2 Sodium Current /Na

As can be seen on the left hand side of Fig. 6.4, the dynamics of the sodium conductance
that we will explore now are substantially more complex.

In order to fit the kinetic behavior of the sodium current, Hodgkin and Huxley had to
postulate the existence of a sodium activation particle m as well as an inactivation particle h,

(6.13)

where GNH is the maximal sodium conductance, G^a = 120 mS/cm2, andENa is the sodium
reversal potential, E^a = 115 mV, relative to the axon's resting potential, m and h are
dimensionless numbers, with 0< m, h < 1. By convention the sodium current is negative,
that is, inward, throughout the physiological voltage range (for V < E^a; see Fig. 6.5).

The amplitude of the sodium current is contingent on four hypothetical gating particles
making independent first-order transitions between an open and a closed state. Since these
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Fig. 6.4 K+ AND NA+ CONDUCTANCES DURING A VOLTAGE STEP Experimentally recorded
(circles) and theoretically calculated (smooth curves) changes in G^a and GK in the squid giant
axon at 6.3° C during depolarizing voltage steps away from the resting potential (which here, as
throughout this chapter, is set to zero). For large voltage changes, GNS briefly increases before it
decays back to zero (due to inactivation), while GK remains activated. Reprinted by permission from
Hodgkin (1958).

particles are independent, the probability for the three m and the one h particle to exist
in this state is nr'h. Notice that h is the probability that the inactivating particle is not in
its inactivating state. Formally, the temporal change of these particles is described by two
first-order differential equations,

(6.14)

and

(6.15)

Empirically, Hodgkin and Huxley derived the following equations for the rate constants:

(6.16)

(6.17)

(6.18)

(6.19)

The associated time constants and steady-state variables are plotted in Fig. 6.3 as a function
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Fig. 6.5 HODGKIN-HUXLEY AC-
TION POTENTIAL Computed ac-
tion potential in response to a 0.5-
msec current pulse of 0.4-nA am-
plitude (solid lines) compared to
a subthreshold response following
a 0.35-nA current pulse (dashed
lines). (A) Time course of the two
ionic currents. Note their large sizes
compared to the stimulating current.
(B) Membrane potential in response
to threshold and subthreshold stim-
uli. The injected current charges
up the membrane capacity (with an
effective membrane time constant
r =0.85 msec), enabling sufficient
/Na to be recruited to outweigh the
increase in /K (due to the increase in
driving potential). The smaller cur-
rent pulse fails to trigger an action
potential, but causes a depolariza-
tion followed by a small hyperpo-
larization due to activation of /K-
(C) Dynamics of the gating parti-
cles. Sodium activation m changes
much more rapidly than either h or
n. The long time course of potas-
sium activation n explains why the
membrane potential takes 12 msec
after the potential has first dipped
below the resting potential to return
to baseline level.

of voltage. Similar to before, both rm and TH are bell-shaped curves,2 but with a tenfold
difference in duration. While m^ is a monotonically increasing function of V, as expected of
an activation variable, h^ decreases with increasing membrane depolarization, the defining
feature of an inactivating particle. Without inactivation, the sodium conductance would
remain at its maximum value in response to a depolarizing voltage step.

The fraction of the steady-state sodium conductance open at rest is less than 1% of
the peak sodium conductance. Inspection of Fig. 6.3 immediately reveals the reason: for
voltages below or close to the resting potential of the axon, the activation variable m is
close to zero while at positive potentials the inactivation variable h is almost zero. Thus,

2. Note that the voltage-dependent membrane time constant for the activation variable Tm has the same symbol as the passive
membrane time constant. When in doubt, we will refer to the latter simply as T.
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the steady-state sodium current G^am^h^V — E^a), also known as the window current,
is always very small. The secret to obtaining the large sodium current needed to rapidly
depolarize the membrane lies in the temporal dynamics of m and h. At values of the
membrane close to the resting potential, h takes on a value close to 1. When a sudden
depolarizing voltage step is imposed onto the membrane as in Fig. 6.4, m changes within
a fraction of a millisecond to its new value close to 1, while h requires 5 msec or longer
to relax from its previous high value to its new and much smaller value. In other words,
two processes control the sodium conductance: activation is the rapid process that increases
GNa upon depolarization and outpaces inactivation, the much slower process that reduces
GNS upon depolarization.

6.2.3 Complete Model
Similar to most other biological membranes, the axonal membrane contains a voltage-
independent "leak" conductance Gm, which does not depend on the applied voltage and re-
mains constant over time. The value measured by Hodgkin and Huxley, Gm =0.3 mS/cm2,
corresponds to a passive membrane resistivity of Rm — 3333 £2 • cm2. The passive
component also has a reversal potential associated with it. Hodgkin and Huxley did
not explicitly measure Vrest, but adjusted it so that the total membrane current at the
resting potential V = 0 was zero. In other words, Vrest was denned via the equation
GNa(0)£Na + GK(O)£K + Gm Vrest

 = 0» and came out to be +10.613 mV. The membrane
capacity Cm = I /iF/cm2. At the resting potential, the effective membrane resistance due
to the presence of the sum of the leak, the potassium, and the (tiny) sodium conductances
amounts to 857 £2 • cm2, equivalent to an effective "passive" membrane time constant of
about 0.85 msec.

We can now write down a single equation for all the currents flowing across a patch of
axonal membrane,

(6.20)

where /jnj is the current that is injected via an intracellular electrode. This nonlinear
differential equation, in addition to the three ordinary linear first-order differential equations
specifying the evolution of the rate constants (as well as their voltage dependencies),
constitutes the four-dimensional Hodgkin and Huxley model for the space-clamped axon
or for a small patch of membrane. Throughout the book, we shall refer to Eq. 6.20, in
combination with the rate constants (Eqs. 6.7, 6.14, and 6.15) at 6.3° C as the standard
Hodgkin-Huxley membrane patch model. In our simulations of these equations, we solve
Eq. 6.20 for an equipotential 30 x 30 x n /iim2 patch of squid axonal membrane and
therefore express lm in units of nanoamperes (nA), and not as current density.

We will explain in the following sections how this model reproduces the stereotyped
sequence of membrane events that give rise to the initiation and propagation of all-or-none
action potentials.

6.3 Generation of Action Potentials

One of the most remarkable aspect of the axonal membrane is its propensity to respond in
either of two ways to brief pulses of depolarizing inward current. If the amplitude of the
pulse is below a given threshold, the membrane will depolarize slightly but will return to the
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membrane's resting potential, while larger currents will induce a pulse-like action potential,
whose overall shape is relatively independent of the stimulus required to trigger it.

Consider the effect of delivering a short (0.5-msec) inward current pulse /inj (t) of 0.35-
nA amplitude to the membrane (Fig. 6.5). The injected current charges up the membrane
capacitance, depolarizing the membrane in the process. The smaller this capacitance, the
faster the potential will rise. The depolarization has the effect of slightly increasing m and n,
in other words, increasing both sodium and potassium activation, but decreasing h, that is,
decreasing potassium inactivation. Because the time constant of sodium activation is more
than one order of magnitude faster than rn and TV, at these voltages, we can consider the
latter two for the moment to be stationary. But the sodium conductance GNS will increase
somewhat. Because the membrane is depolarized from rest, the driving potential for the
potassium current, V — £K, has also increased. The concomitant increase in /K outweighs
the increase in /Na due to the increase in G^a and the overall current is outward, driving
the axon's potential back toward the resting potential. The membrane potential will slightly
undershoot and then overshoot until it finally returns to Vrest. The oscillatory response
around the resting potential can be attributed to the small-signal behavior of the potassium
conductance acting phenomenologically similar to an inductance (see Chap. 10 for further
discussion).

If the amplitude of the current pulse is increased slightly to 0.4 nA, the depolarization
due to the voltage-independent membrane components will reach a point where the amount
of /Na generated exceeds the amount of /K. At this point, the membrane voltage undergoes a
runaway reaction: the additional 7Na depolarizes the membrane, further increasing m, which
increases /Na, causing further membrane depolarization. Given the almost instantaneous
dynamics of sodium activation (rm ~ 0.1-0.2 msec at these potentials), the inrushing
sodium current moves the membrane potential within a fraction of a millisecond to 0 mV
and beyond. In the absence of sodium inactivation and potassium activation, this positive
feedback process would continue until the membrane would come to rest at E^a. As we
saw already in Fig. 6.4, after a delay both the slower sodium inactivation variable h as well
as the potassium activation n will turn on (explaining why /K is also called the delayed
rectifier current /DR)- Sodium inactivation acts to directly decrease the amount of sodium
conductance available, while the activation of the potassium conductance tends to try to
bring the axon's membrane potential toward EH by increasing /K. Thus, both processes
cause the membrane potential to dip down from its peak. Because the total sodium current
quickly falls to zero after 1 msec, but /K persists longer at small amplitudes (not readily
visible in Fig. 6.5), the membrane potential is depressed to below its resting level, that is,
the axon hyperpolarizes. At these low potentials, eventually potassium activation switches
off, returning the system to its initial configuration as V approaches the resting potential.

6.3.1 Voltage Threshold for Spike Initiation
What are the exact conditions under which a spike is initiated? Does the voltage have to
exceed a particular threshold value V^, or does a minimal amount of current 7^ have to
be injected, or does a certain amount of electrical charge Qth have to be delivered to the
membrane in order to initiate spiking? These possibilities and more have been discussed in
the literature and experimental evidence exists to support all of these views under different
circumstances (Hodgkin and Rushton, 1946; Cooley, Dodge, and Cohen, 1965; Noble and
Stein, 1966; Cole, 1972;Rinzel, 1978; for a thorough discussion see Jack, Noble, and Tsien,
1975). Because the squid axon is not a good model for spike encoding in central neurons,



6.3 Generation of Action Potentials 153

we will defer a more detailed discussion of this issue to Sees. 17.3 and 19,2. We here
limit ourselves to considering spike initiation in an idealized nonlinear membrane, without
dealing with the complications of cable structures (such as the axon).

To answer this question, we need to consider the I-V relationship of the squid axonal
membrane. Because we are interested in rapid synaptic inputs, we assume that the risetime
of the synaptic current is faster than the effective passive time constant, T = 0.85 msec,
and make use of the observation that the dynamics of sodium activation m is very rapid (the
associated time constant is always less than 0.5 msec) and at least a factor of 10 faster than
sodium inactivation h and potassium activation n (see Fig. 6.3). With these observations
in mind, we ask what happens if the input depolarizes the membrane very rapidly to a new
value VI Let us estimate the current that will flow with the help of the instantaneous I-V
relationship Io(V) (Fig. 6.6).

/o is given by the sum of the ionic and the leak currents. We approximate the associated
sodium and potassium conductances by assuming that h and n have not had time to change
from the value they had at the resting potential V — 0, while m adjusts instantaneously to
its new value at V. In other words,

(6.21)

Figure 6.6 shows the inverted U-form shape of /o in the neighborhood of the resting
potential, as well as its three ionic components /Na, /K» and I\ea^.

In the absence of any input, the system rests at V = 0. If a small depolarizing voltage
step is applied, the system is displaced to the right, generating a small, positive current. This
current is outward since the increase in m (increasing the amplitude of /Na) is outweighed
by the increase in the driving potential V — EK (increasing 7K) and the decrease in /leak-

Fig. 6.6 CURRENT-VOLTAGE RELATIONSHIP AROUND REST Instantaneous I-V relationship,
/o, associated with the standard patch of squid axon membrane and its three components: /o =
/Na + IK. + /leak (Eq. 6.21). Because m changes much faster than either h or n for rapid inputs, we
computed G^ and GK. under the assumption that m adapts instantaneously to its new value at V,
while h and n remain at their resting values, /o crosses the voltage axis at two points: a stable point at
V = 0 and an unstable one at Va, « 2.5 mV. Under these idealized conditions, any input that exceeds
FO, will lead to a spike. For the "real" equations, m does not change instantaneously and nor do n and
h remain stationary; thus, /o only crudely predicts the voltage threshold which is, in fact, 6.85 mV
for rapid synaptic input. Note that /o is specified in absolute terms and scales with the size of the
membrane patch.
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This forces the membrane potential back down toward the resting potential: the voltage
trajectory corresponds to a subthreshold input. Similarly, if a hyperpolarizing current step
is injected, moving the system to below V = 0, a negative inward current is generated,
pulling the membrane back up toward Vrest. The slope of the I-V curve around the resting
potential dl/dV, termed the membrane slope conductance, is positive (for a substantial
discussion of this concept, see Sec. 17.1.2). That is, the point V = 0 is a stable attractor.
(For these and related notions, we defer the reader to the following chapter.)

/o( V) has a second zero crossing at V = V& « 2.5 mV. If an input moves the membrane
potential to exactly Vth, n° current flows and the system remains at Vth (Fig- 6.6). Because
the slope conductance is negative, the point is unstable, and an arbitrarily small perturbation
will carry the system away from the zero crossing. A negative perturbation will carry the
system back to Vrest- Conversely, a positive voltage displacement, no matter how minute,
causes a small inward current to flow, which further depolarizes the membrane (due to the
negative slope conductance), leading in turn to a larger inward current, and so on. The
membrane potential rapidly increases to above absolute zero, that is, an action potential is
triggered. During this phase, very large inward currents are generated, far exceeding the
amplitude of the modest stimulus current. (Recall that around these potentials, /Na increases
e-fold every 3.9 mV.) For the patch of squid membrane simulated here (where the current
scales linearly with the area of the patch), the peak of /Na is about 23 nA.

This qualitative account of the origin of the voltage threshold for an active patch of
membrane argues that in order for an action potential to be initiated, the net inward current
must be negative. For rapid input, this first occurs at V = Vth- This analysis was based on the
rather restrictive assumption that m changes instantaneously, while h and n remain fixed. In
practice, neither assumption is perfect. Indeed, while our argument predicts Vth = 2.5 mV,
the voltage threshold for spike initiation for rapid EPSPs for the Hodgkin-Huxley equation
is, in fact, equal to 6.85 mV (Noble and Stein, 1966). As discussed in Sec. 17.3, reaching
a particular value of the voltage for a rapid input in a single compartment is equivalent to
rapidly dumping a threshold amount of charge £)th into the system.

Applying a current step that increases very slowly in amplitude—allowing the system to
relax always to its stationary state—prevents any substantial sodium current from flowing
and will therefore not cause spiking. Thus, not only does a given voltage level have to
be reached and exceeded but also within a given time window. We take up this issue in
Sec. 17.3 in the context of our full pyramidal cell model and in Sec. 19.2 to explore how
Vth is affected by the cable structure.

6.3.2 Refractory Period
Once the rapid upstroke exceeding 0 has been generated, the membrane potential should
be pulled back to its resting potential, that is, repolarized, as rapidly as possible in order to
enable the system to generate the next impulse.3

This is accomplished by inactivating GNJJ and by increasing a potassium conductance,
GK- This conductance remains activated even subsequent to spike polarization (for up to
12 msec following the peak of the action potential in Fig. 6.5), causing the membrane
to undergo a hyperpolarization. During this period, it is more difficult to initiate an action
potential than before; the membrane remains in a refractory state. The reason for the reduced
ability of the membrane to discharge again is the inactivation of 7Na (that is, h is small) and
the continuing activation of /K (n only decays slowly).

3. Given a specific membrane capacitance of 1 /ctF/cm2, the 100 mV spike depolarization amounts to transferring about 6,000
positively charged ions per n,m of membrane area.
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This refractory period can be documented by the use of a second current pulse (Fig. 6.7).
At t = 1 msec a 0.5-msec current pulse is injected into our standard patch of squid axonal
membrane. The amplitude of this pulse, I\ = 3.95 nA, is close to the minimal one needed
to generate an action potential. The input causes a spike to be triggered that peaks at
around 5 msec and repolarizes to V = 0 at t = 1 msec. This time, at which the membrane
potential starts to dip below the resting potential (Fig. 6.5), is somewhat arbitrarily assigned
to Af = 0. Following this point, a second 0.5-msec-long current pulse of amplitude /2 is
applied A? msec later. The amplitude of /2 is increased until a second action potential is
generated. This first occurs at At = 2 msec (that is, 2 msec after the membrane potential
has repolarized to zero). At this time, h/I\ = 23.7, that is, the amplitude of the second
pulse must be 23.7 times larger than the amplitude of the first pulse in order to trigger a
spike. Since such large current amplitudes are unphysiological, the membrane is de facto
not excitable during this period, which is frequently referred to as the absolute refractory
period. The threshold for initiation of the second spike is elevated up to 11 msec after
repolarization of the membrane due to the first spike (relative refractory period; Fig. 6.7).
This is followed by a brief period of mild hyperexcitability, when a spike can be elicited by
a slightly (15%) smaller current than under resting conditions.

From a computational point of view, it is important to realize that the threshold behavior
of the Hodgkin-Huxley model depends on the previous spiking history of the membrane.
In the squid axon, as in most axons, the threshold rises only briefly, returning to baseline
levels after 20 msec or less. As warming the axon to body temperatures speeds up the rates
of gating two- to fourfold,4 the minimal separation time is expected to be only 1-2 msec

Fig. 6.7 REFRACTORY PERIOD A 0.5-msec brief current pulse of I\ = 0.4 nA amplitude causes
an action potential (Fig. 6.5). A second, equally brief pulse of amplitude /2 is injected At msec after
the membrane potential due to the first spike having reached V = 0 and is about to hyperpolarize
the membrane. For each value of Af, /2 is increased until a second spike is generated (see the inset
for Af = 10 msec). The ratio h/h of the two pulses is here plotted as a function of At. For
several milliseconds following repolarization, the membrane is practically inexcitable since such large
currents are unphysiological (absolute refractory period). Subsequently, a spike can be generated,
but it requires a larger current input (relative refractory period). This is followed by a brief period of
reduced threshold (hyperexcitability). No more interactions are observed beyond about A? = 18 msec.

4. A crucial parameter in determining the dynamics of the action potential is the temperature. As first mentioned in footnote
5 in Sec. 4.6, if the temperature is reduced, the rate at which the ionic channels underlying the action potential open or close
slows down, while the peak conductance remains unchanged. Hodgkin and Huxley recorded most of their data at 6.3° C and
the rate constants are expressed at these temperatures (Eqs. 6.10, 6.11 and 6.16-6.19). To obtain the action potential at any other

temperature T, all a's and /8's need to be corrected by Q\0 ,with 210 between 2 and 4 (Hodgkin, Huxley, and Katz, 1952;
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for axons in warm-blooded animals. Nerve cells—as compared to axons—often display a
much longer increase in their effective spiking threshold, depending on the number of action
potentials generated within the last 100 msec or longer (Raymond, 1979). Section 9.3 will
treat the biophysical mechanism underlying this short-term firing frequency adaptation in
more detail.

6.4 Relating Firing Frequency to Sustained Current Input

What happens if a long-lasting current step of constant amplitude is injected into the space-
clamped axon (Agin, 1964; Cooley, Dodge, and Cohen, 1965; Stein, 1967a)? If the current
is too small, it will give rise to a persistent subthreshold depolarization (Fig. 6.8). Plotting
the steady-state membrane depolarization as a function of the applied membrane current
(Fig. 6.9A) reveals the linear relationship between the two. If the input is of sufficient
amplitude to exceed the threshold, the membrane will generate a single action potential
(Fig. 6.8). The minimal amount of sustained current needed to generate at least one action
potential (but not necessarily an infinite train of spikes) is called rheobase (Cole, 1972).
For our standard membrane patch, rheobase corresponds to 0.065 nA. (This current is
obviously far less than the amplitude of the brief current pulse used previously.) After the
spike has been trigged and following the afterhyperpolarization, V(t) stabilizes at around
2 mV positive to the resting potential, limiting the removal of sodium inactivation as well
as enhancing /K. As the current amplitude is increased, the offset depolarization following
the action potential and its hyperpolarization increases until, when the amplitude of the
current step is about three times rheobase (0.175 nA), a second action potential is initiated.
At around 0.18 nA (/i in Fig. 6.9A), the Hodgkin-Huxley equations will start to generate
an indefinite train of spikes, that is, the membrane fires repetitively. After the membrane
potential goes through its gyrations following each action potential, V creeps past Vth and
the cycle begins anew: the system travels on a stable limit cycle. In a noiseless situation, the
interval between consecutive spikes is constant and the cell behaves as a periodic oscillator
with constant frequency.

Figure 6.9A shows the associated steady-state I—V relationship. Experimentally, it can
be obtained by clamping the membrane potential to a particular value V and measuring
the resultant clamp current 7. The equations generate infinite trains of action potentials for
I > /i (dashed line in Fig. 6.9A).

A mathematical curiosity of uncertain relevance is the observation that for a range of
amplitudes of the current step, the Hodgkin-Huxley equations can display several solutions,
including the stable and periodic oscillation emphasized here, a stable but steady-state
depolarizing solution, and an unstable periodic solution (Troy, 1978; Rinzel and Miller,
1980). Which one is actually realized depends on the initial conditions.

If the current amplitude is further increased, the interspike intervals begin to decrease and
the spiking frequency increases. Figure 6.9B shows the relationship between the amplitude
of the injected current and the spiking frequency around threshold, and Fig. 6.10A over
a larger current range. It is referred to as the frequency-current or /-/ curve. Overall,

(continued) Beam and Donaldson, 1983; for a definition of Q\Q see footnote 5 in Sec. 4.6). The Q\Q for the peak conductances is
a modest 1.3. As the temperature is increased, the upstroke, that is, the rate at which the voltage rises during the rapid depolarizing
phase of the action potential, increases, because the speed at which /Na is activated increases. At the same time, both sodium
inactivation and potassium activation increase. Altogether, the total duration of the spike decreases. At temperatures above 33° C no
spike is generated (Hodgkin and Katz, 1949; of course, the squid axon lives in far more frigid waters than these balmy temperatures).
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Fig. 6.8 REPETITIVE SPIKING Voltage trajectories
in response to current steps of various amplitudes in
the standard patch of squid axonal membrane. The
minimum sustained current necessary to initiate a
spike, termed rheobase, is 0.065 nA. In order for the
membrane to spike indefinitely, larger currents must
be used. Experimentally, the squid axon usually stops
firing after a few seconds due to secondary inactiva-
tion processes not modeled by the Hodgkin-Huxley
equations (1952d).

Fig. 6.9 SUSTAINED SPIKING IN THE HODGKIN-HUXLEY EQUATIONS (A) Steady-state I-V
relationship and (B) /-/ or discharge curve as a function of the amplitude of the sustained current /
associated with the Hodgkin-Huxley equations for a patch of squid axonal membrane. For currents
less than 0.18 nA, the membrane responds by a sustained depolarization (solid curve). At /i, the
system loses its stability and generates an infinite train of action potentials: it moves along a stable
limit cycle (dashed line). A characteristic feature of the squid membrane is its abrupt onset of firing
with nonzero oscillation frequency. The steady-state I-V curve can also be viewed as the sum of all
steady-state ionic currents flowing at any particular membrane potential Vm.

there is a fairly limited range of frequencies at which the membrane fires, between 53 and
138 Hz. If a current at the upper amplitude range is injected in the axon, the membrane fails
to repolarize sufficiently between spikes to relieve sodium inactivation. Thus, although
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Fig. 6.10 HODGKIN-HUXLEY /-/ CURVE AND NOISE (A) Relationship between the amplitude
of an injected current step and the frequency of the resultant sustained discharge of action potentials
(/-/ curve) for a membrane patch of squid axon at 6.3° C (solid line) and its numerical fit (dashed
line) by / = 33.2 log / + 106. Superimposed in bold is the /-/ curve for the standard squid axon
cable (using normalized current). Notice the very limited bandwidth of axonal firing. (B) /-/ curve
for the membrane patch case around its threshold (rheobase) in the presence of noise. White (2000-
Hz band-limited) current noise whose amplitude is Gaussian distributed with zero mean current is
added to the current stimulus. In the absence of any noise (solid line) the /-/ curve shows abrupt
onset of spiking. The effect of noise (dotted curve—standard deviation of 0.05 nA; dashed curve—
0.1 n A) is to linearize the threshold behavior and to increase the bandwidth of transmission (stochastic
linearization). Linear /-/ curves are also obtained when replacing the continuous and deterministic
Hodgkin-Huxley currents by discrete and stochastic channels (see Sec. 8.3).

the membrane potential does show oscillatory behavior, no true action potentials are
generated.

In the laboratory, maintained firing in the squid axon is not that common (Hagiwara and
Oomura, 1958; see, however, Chapman, 1963). This is most likely due to secondary inacti-
vation mechanisms which are not incorporated into the Hodgkin-Huxley equations. Yet for
short times, the theoretical model of Hodgkin and Huxley makes reasonably satisfactory
predictions of the behavior of the space-clamped axon (for a detailed comparison between
experimental observations and theoretical predictions see Guttman and Barnhill, 1970 as
well as Chap. 11 in the ever trustworthy Jack, Noble, and Tsien, 1975), in particular with
respect to the small dynamic range of firing frequencies supported by the axonal membrane
and the abrupt onset of spiking at a high firing frequency. The /-/ curve can be well
approximated by either a square root or a logarithmic relationship between frequency and
injected current (Agin, 1964; see Fig. 6.10).

The /-/ curves of most neurons, and not just the squid axon, bend over and saturate
for large input currents. This justifies the introduction of a smooth, sigmoidal nonlinearity
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mimicking the neuronal input-output transduction process in continuously valued neural
network models (Hopfield, 1984). It is important to keep in mind that the paradigm under
which the /-/ curves are obtained, sustained current input* represents only a very crude
approximation to the dynamic events occurring during synaptic bombardment of a cell
leading to very complex spike discharge patterns (see Chap. 14).

An important feature of the Hodgkin-Huxley model is that the frequency at the onset of
repetitive activity has a well-defined nonzero minimum (about 53 Hz at 6.3° C; Fig. 6.10B).
The membrane is not able to sustain oscillations at lower frequencies. This behavior,
generated by a so-called Hopf bifurcation mechanism, is generic to a large class of oscillators
occurring in nonlinear differential equations (Cronin, 1987; Rinzel and Ermentrout, 1998)
and will be treated in more detail in the following chapter.

As first explicitly simulated by Stein (1967b), adding random variability to the input can
increase the bandwidth of the axon by effectively increasing the range within which the
membrane can generate action potentials. If the input current is made to vary around its mean
with some variance, reflecting for instance the spontaneous release of synaptic vesicles, the
sharp discontinuity in the firing frequency at low current amplitudes is eliminated, since even
with an input current that is on average below threshold, the stimulus will become strong
enough to generate an impulse with a finite, though small, average frequency. Depending
on the level of noise, the effective minimal firing frequency can be reduced to close to
zero (Fig. 6.1 OB). A similar linearization behavior can be obtained if the continuous,
deterministic, and macroscopic currents inherent in the Hodgkin-Huxley equations are
approximated by the underlying discrete, stochastic, and microscopic channels (Skaugen
and Walloe, 1979; see Sec. 8.3).

Adding noise to a quantized signal to reduce the effect of this discretization is a standard
technique in engineering known as dithering or stochastic linearization (Gammaitoni, 1995;
Stemmler, 1996).

A large number of neurons can generate repetitive spike trains with arbitrarily small
frequencies. As first shown by Connor and Stevens (1971c) in their Hodgkin-Huxley-like
model of a gastropod nerve cell, the addition of a transient, inactivating potassium current
(termed the I A current) enables the cell to respond to very small sustained input currents
with a maintained discharge of very low frequency. (This topic will be further pursued in
Sec. 7.2.2.) Such low firing frequencies are also supported by pyramidal cells (Fig. 9.7).

6.5 Action Potential Propagation along the Axon

Once the threshold for excitation has been exceeded, the all-or-none action potential can
propagate from the stimulus site to other areas of the axon. The hypothesis that this
propagation is mediated by cable currents flowing from excited to neighboring, nonexcited
regions was suggested already around the turn of the century by Hermann (1899). It was
not until Hodgkin (1937) that direct experimental proof became available. A quantitative
theory of this propagation had to await Hodgkin and Huxley's 1952 study. Because this
has been a very well explored chapter in the history of biophysics, we will be brief here,
only summarizing the salient points. Chapter 10 in Jack, Noble, and Tsien (1975) provides a
deep and thorough coverage of nonlinear cable theory as applied to the conduction of action
potentials. Section 19.2 will deal with how cable structures, such as an infinite cylinder,
affect the voltage threshold for spike initiation.



160 THE HODGKIN-HUXLEY MODEL OF ACTION POTENTIAL GENERATION

6.5.1 Empirical Determination of the Propagation Velocity
The equivalent electrical circuit replicates the patch of sodium, potassium, and leak conduc-
tances and batteries (Fig. 6.2) along the cable in a fashion we are already familiar with from
the passive cable (Fig. 6.11). Equation 2.5 specifies the relationship between the membrane
current (per unit length) and the voltage along the cable,

(6.22)

In Eq. 6.20, we derived the membrane current (per unit area) flowing in a patch of axonal
membrane. Combining the two with the appropriate attention to scaling factors leads to
an equation relating the potential along the axon to the electrical property of the active
membrane,

(6.23)

where d is the diameter of the axon. Hodgkin and Huxley (1952d) used a d = 0.476 mm
thick axon in their calculations and a value of /?, = 35.4 Q-cm. This nonlinear partial
differential equation, in conjunction with the three equations describing the dynamics of
m, h, and n and the appropriate initial and boundary conditions, constitutes the complete
Hodgkin-Huxley model.

This type of second-order equation, for which no general analytical solution is known,
is called a reaction-diffusion equation, because it can be put into the form of

(6.24)

with D > 0 constant. We will meet this type of equation again when considering the
dynamics of intracellular calcium (see Chap. 11). Under certain conditions, it has wave-like
solutions.

Because Hodgkin and Huxley only had access to a very primitive hand calculator,
they could not directly solve Eq. 6.23. Instead, they considered a particular solution
to these equations. Since they observed that the action potential propagated along the
axon without changing its shape, they postulated the existence of a wave solution to this
equation, in which the action potential travels with constant velocity u along the axon,
that is, V(x, t) = V(x — ut). Taking the second spatial and temporal derivative of this

Fig. 6.11 ELECTRICAL CIRCUIT or THE SQUID GIANT AXON One-dimensional cable model of
the squid giant axon. The structure of the cable is as in the passive case (Fig. 2.2B), with the RC
membrane components augmented with circuit elements modeling the sodium and potassium currents
(Fig. 6.2).
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expression and using the chain rule leads to a second-order hyperbolic partial differential
equation,

(6.25)

Replacing the second spatial derivative term in Eq. 6.23 with this expression yields

(6.26)

with K = 4Riu2Cm/d and 7j0nic denned in Eq. 6.2. Equation 6.26 is an ordinary second-
order differential equation, whose solution is much easier to compute than the solution to
the full-blown partial differential equation. It does require, though, a value for u. By a
laborious trial-and-error procedure, Hodgkin and Huxley iteratively solved this equation
until they found a value of u leading to a stable propagating wave solution. In a truly
remarkable test of the power of their model, they estimated 18.8 m/sec (at 18.3° C) for the
velocity at which the spike propagates along the squid giant axon, a value within 10% of the
experimental value of 21.2 m/sec. This is all the more remarkable, given that their model
is based on voltage- and space-clamped data, and represents one of the rare instances in
which a neurobiological model makes a successful quantitative prediction.

We can establish the dependency of the velocity on the diameter of the fiber using the
following argumentation. Because both /,• and Cm are expressed as current and capacitance
per unit membrane area, their ratio is independent of the fiber diameter. The voltage across
the membrane and its temporal derivatives must also be independent of d. This implies that
the constant K in Eq. 6.26 must remain invariant to changes in diameter. Assuming that
Cm and Rj do not depend on d, we are lead to the conclusion that the velocity u must be

(6-27)

In other words, the propagation velocity in unmyelinated fibers is expected to be proportional
to the square root of the axonal diameter.5 Indeed, this predicted relationship is roughly
followed in real neurons (see Fig. 6.16; Ritchie, 1995).

This implies that if the delay between spike initiation at the cell body and the arrival of
the spike at the termination of an axon needs to be cut in half, the diameter of the axon needs
to increase by a factor of 4, a heavy price to pay for rapid communication. The premium
put on minimizing propagation delay in long cable structures is most likely the reason the
squid evolved such thick axons. As we will see further below, many axons in vertebrates
use a particular form of electrical insulation, termed myelination, to greatly speed up spike
propagation without a concomitant increase in fiber diameter.

It was more than 10 years later that Cooley, Dodge, and Cohen (1965; see also Cooley
and Dodge, 1966) solved the full partial differential equation (Eq. 6.23) numerically using
an iterative technique. Figure 6.12 displays the voltage trajectory at three different locations
along the axon; at x = 0 a short suprathreshold current pulse charges up the local membrane
capacitance. This activates the sodium conductance and Na+ ions rush in, initiating the
full-blown action potential (not shown). The local circuit current generated by this spike
leads to an exponential rise in the membrane potential in the neighboring region, known
as the "foot" of the action potential. This capacitive current in turn activates the local
sodium conductance, which will increase rapidly, bringing this region above threshold:

5. Notice that we derived a similar square-root relationship between diameter and "pseudovelocity" for the decremental wave
in the case of a passive cable (Eq. 2.53).
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the spike propagates along the axon. Different from the space-clamped axon, where the
capacitive current is always equal and opposite to the ionic currents once the stimulus
current has stopped flowing (Eq. 6.20), the time course of current is more complex
during the propagated action potential due to the local circuit currents. Because some
fraction of the local membrane current depolarizes neighboring segments of the axonal
cable (the so-called local circuit currents; see Fig. 6.13), the current amplitude required
to trigger at least one action potential is larger than the current amplitude in the space-
clamped case

If the voltage applied to the squid membrane is small enough, one can linearize the mem-
brane, describing its behavior in terms of voltage-independent resistances, capacitances, and
inductances. This procedure was first carried out by Hodgkin and Huxley (1952d) and will
be discussed in detail in Chap. 10. Under these circumstances, a space constant A can be
associated with the "linearized" cable, describing how very small currents are attenuated
along the axon. At rest, the dc space constant for the squid axon is A. = 5.4 mm, about 10
times larger than its diameter.

When long current steps of varying amplitudes are injected into the axon, the squid axon
responds with regular, periodic spikes. However, the already small dynamic range of the
/-/ curve of the space-clamped axon (Fig. 6.10A) becomes further reduced to a factor of
less than 1.7 when the sustained firing activity in the full axon is considered (from 58 to
96 Hz at 6.3° C). Thus, while the Hodgkin-Huxley model describes to a remarkable degree
the behavior of the squid's giant axon, the equations do not serve as an adequate model for
impulse transduction in nerve cells, most of which have a dynamic range that extends over
two orders of magnitude.

As predicted by Huxley (1959), Cooley and Dodge (1966) found a second solution to the
Hodgkin-Huxley equations. When the amplitude of the injected current step is very close
to the threshold for spike initiation, they observed a decremental wave propagating away

Fig. 6.12 PROPAGATING ACTION POTENTIAL Solution to the complete Hodgkin-Huxley model
for a 5-cm-long piece of squid axon for a brief suprathreshold current pulse delivered to one end
of the axon. This pulse generates an action potential that travels down the cable and is shown here
at the origin as well as 2 and 3 cm away from the stimulating electrode (solid lines). Notice that
the shape of the action potential remains invariant due to the nonlinear membrane. The effective
velocity of the spike is 12.3 m/sec (at 6.3° C). If the amplitude of the current pulse is halved, only
a local depolarization is generated (dashed curve) that depolarizes the membrane 2 cm away by a
mere 0.5 mV (not shown). This illustrates the dramatic difference between active and passive voltage
propagation.


