THE MEMBRANE EQUATION

Any physical or biophysical mechanism instantiating an information processing system that
needs to survive in the real world must obey several constraints: (1) it must operate at high
speeds, (2) it must have a rich repertoire of computational primitives, with the ability to
implement a variety of linear and nonlinear, high-gain, operations, and (3) it must interface
with the physical world—in the sense of being able to represent sensory input patterns
accurately and translate the result of the computations into action, that is motor output
(Keyes, 1985).

The membrane potential is the one physical variable within the nervous system that
fulfills these three requirements: it can vary rapidly over large distances (e.g., an action
potential changes the potential by 100 mV within | msec, propagating up to 1 cm or
more down an axon within that time), and the membrane potential controls a vast number
of nonlinear gates—ionic channels—that provide a very rich substrate for implementing
nonlinear operations. These channels transduce visual, tactile, auditory, and olfactory stimuli
into ¢hanges of the membrane potential, and such voltage changes back into the relcase of
neurotransmitters or the contraction of muscles.

This is not to deny that ionic fluxes, or chemical interactions of various substances with
each other, are not crucial to the working of the brain. They are, and we will study some
of these mechanisms in Chap. 11. Yet the membrane potential is the incisive variable that
serves as primary vehicle for the neuronal operations underlying rapid computations—at
the fraction of a second time scale—in the brain.

We will introduce the reader in a very gentle manner to the electrical properties of nerve
cells by starting off with the very simplest of all neuronal models, consisting of nothing more
than a resistance and a capacitance (a so-called RC circuit). Yet endowed with synaptic input,
this model can already implement a critical nonlinear operation, divisive normalization and
gain control.

1.1 Structure of the Passive Neuronal Membrane

As a starting point, we choose a so-called point representation of a neuron. Here, the
spatial dependency of the neuron is reduced to a single point or compartment. Such an

5



6 e THE MEMBRANE EQUATION

approximation would be valid. for instance, if we were investigating a small, spherical cell
without a significant dendritic tree.

1.1.1 Resting Potential

The first thing we notice once we managed to penetrate into this cell with a wire from
which we can record (termed an intracellular microelectrode) is the existence of an electrical
potential across this membrane. Such experiments, carried out in the late 1930s by Cole
and Curtis (1936) in Woods Hole, Massachusetts, and by Hodgkin and Huxley (1939) on
the other side of the Atlantic, demonstrated that almost always, the membrane potential,
defined as the difference betwcen the intracellular and the extracellular potentials, or

V(1) = Vi(t) — Ve(1), (1.1

1s negative. Here ¢ stands for time. In particular, at rest, all cells, whether ncurons, glia or
muscle cells, have a negative resting potential, symbolized throughout the book as V.
Depending on the circumstances, it can be as high as —30 mV or as low as —90 mV. Note
that when we say the cell is at “rest,” it is actually in a state of dynamic equilibrium. Tonic
currents are flowing across the membrane, but they balance each other, in such a manner
that the net current flowing across the membranc is zero. Maintaining this equilibrium is a
major power expenditure for the nervous system. Half of the metabolic energy consumed
by a mammalian brain has been estimated to be due to the membrane-bound pumps that
are responsible for the upkeep of the underlying ionic gradients (Ames, 1997).

The origin of Vi lies in the differential distribution of ions across the membrane, which
we do not further describe here (see Sec. 4.4 and Hille, 1992). V. need not necessarily
be fixed. Indeed, we will discuss in Sec. 18.3 conditions under which a network of cortical
cells can dynamically adjust their resting potentials.

1.1.2 Membrane Capacity

What is the nature of the membrane separating the intracellular cytoplasm from the extra-
cellular milieu (Fig. 1.1)? The two basic constitutive elements of biological membranes,
whether from the nervous system or from nonneuronal tissues such as muscle or red blood
cells, whether prokaryotic or eukaryotic, are proteins and lipids (Gennis, 1989).

The backbone of the membrane is made of two layers of phospholipid molecules, with
their polar heads facing the intracellular cytoplasm and the extracellular space, thereby
separating the intenal and external conducting solutions by a 30-50-A-thin insulating
layer. We know that whenever a thin insulator is keeping charges apart, it will act like a
capacitance. The capacitance C is a measure of how much charge Q needs to be distributed
across the membrane in order for a certain potential V,, to build up. Or, conversely, the
membrane potential V,, allows the capacitance to build up a charge Q on both sides of the
membranc, with

Q=CV,. (1.2)

In membrane biophysics, the capacitance is usually specified in terms of the specific
membrane capacitance C,,, in units of microfarads per square centimeter of membrane area
(uF/cm?). The actual value of C can be obtained by multiplying C,, by the total membrane
arca. The thickness and the dielectric constant of the bilipid layer determine the numerical
value of C,,. For the simplest type of capacitance formed by two parallel plates, C,, scales
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Fig. 1.1 NATURE OF THE PASSIVE NEURONAL MEMBRANE (A) Schematic representation of a
small patch of membrane of the types enclosing all cells. The 30-50 A thin bilayer of lipids isolates the
extracellular side from the intracellular one. From an electrical point of view, the resultant separation
of charge across the membrane acts akin to a capacitance. Proteins inserted into the membrane, here
ionic channels, provide a conduit through the membrane. Reprinted by permission from Hille (1992).
(B) Associated lumped electrical circuit for this patch, consisting of a capacitance and a resistance
in series with a battery. The resistance mimics the behavior of voltage-independent ionic channels
inserted throughout the membrane and the battery accounts for the cell’s resting potential Vieg.

inversely with the thickness separating the charges (the thinner the distance between the
two plates, the stronger the mutual attraction of the charges across the insulating material).
As discussed in Appendix A, the specific capacitance per unit area of biological membranes
is between 0.7 and 1 uF/cm?. For the sake of convenience, we adopt the latter, simple to
remember, value. This implies that a spherical cell of 5-y4m radius with a resting potential
of —70 mV stores about —0.22x 1072 coulomb of charge just below the membrane and
an equal but opposite amount of charge outside.

When the voltage across the capacitance changes, a current will flow. This capacitive
current, which moves on or off the capacitance, is obtained by differentiating Eq. 1.2 with
respect to time (remember that current is the amount of charge flowing per time),
dV,, (1)

dr
For a fixed current, the existence of the membrane capacitance imposes a constraint on how
rapidly V,, can change in response to this current; the larger the capacitance, the slower the
resultant voltage change.

It is important to realize that there is never any actual movement of charge across the
insulating membrane. When the voltage changes with time, the charge changes and a current
will flow, in accordance with Eq. 1.3, but never directly across the capacitance. The charge
merely redistributes itself across the two sides by way of the rest of the circuit.

Can any current flow directly across the bilipid layers? As detailed in Appendix A, the
extremely high resistivity of the lipids prevents passages of any significant amount of charge
across the membrane. Indeed, the specific resistivity of the membrane is approximately one
billion times higher than that of the intracellular cytoplasm. Thus, from an electrical point
of view, the properties of the membrane can be satisfactorily described by a sole element:
a capacitance.

Ie =C (1.3)
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1.1.3 Membrane Resistance

With no other components around, life would indeed be dull. What endows a large collection
of squishy cells with the ability to move and to think are the all-important proteins embedded
within the membrane. Indeed, they frequently penetrate the membrane, allowing ions to pass
from one side to the other (Fig. 1.1). Protein molecules, making up anywhere from 20 to 80%
(dry weight) of the membrane, subserve an enormous range of specific cellular functions,
including ionic channels, enzymes, puraps, and receptors. They act as doors or gates in the
lipid barrier through which particular information or substances can be transferred from
one side to the other. As we shall sec later on, a great variety of such *“gates” exists, with
different keys to open them. For now, we are interested in those membrane proteins that act
as ionic channels or pores, enabling ions to travel from one side of the membrane to the
other. We will discuss the molecular naturc of these channels in more detail in Chap. 8.

For now, we will summarily describe the current flow through these channels by a simple
linear resistance R. Since we also have to account for the resting potential of the cell, the
simplest electrical description of a small piece of membrane includes three elements, C, R,
and Vieq (Fig. 1.1). Such a circuit describes a passive membrane in contrast to quasi-active
and active membranes, which contain, respectively, linear, inductance-like, and nonlinear
voltage-dependent membrane components. For obvious reasons, it is also sometimes known
as an RC circuit. Fortuitously, the membranes of quite a few cells can be mimicked by such
RC circuits, at least under some limited conditions.

The membrane resistance is usually specified in terms of the specific membrane resis-
tance R,,, cxpressed in terms of resistance times unit area (in units of €2 - cm?). R is
obtained by dividing R, by the area of the membrane being considered. The inverse of R,,
is known as the passive conductance per unit area of dendritic membrane or, for short, as
the specific leak conductance G,, = 1/R,, and is measured in units of siemens per square
centimeter (S/cm?).

1.2 A Simple RC Circuit

Let us now carry out a virtual electrophysiological experiment. Assume that we have
identified a small spherical neuron of diameter d and have managed to insert a small
electrode into the cell without breaking it up. Under the conditions of our experiments,
we have reasons to believe that its membrane acts passively. We would like to know what
happens if we inject current /i;(¢) through the microelectrode directly into the cell. This
electrode can be thought of as an ideal current source (in contrast to an ideal voltage source,
such as a battery).

How can we describe the dynamics of the membrane potential V,, () in response to this
current? The cell membrane can be conceptualized as being made up from many small
RC circuits (Fig. 1.2A). Because the dimensions of the cell are so small, the electrical
potential across the membrane is everywhere the same and we can neglect any spatial
dependencies; physiologists will say the cell is isopotential. This implies that the electrical
behavior of the cell can be adequately described by a single RC compartment with a current
source (Fig. 1.2B). The net resistance R is determined by the specific membrane resistance
R,, divided by the total membrane area nd? (since the current can flow out through
any one part of the membrane) while the total capacitance C is given by C,, times the
membrane area.
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Fig. 1.2 ELECTRICAL STRUCTURE OF A SMALL PassivE NEURON (A) Equivalent electrical
model of a spherical cell with passive membrane. An intracellular electrode delivers current to the
ccll. By convention, an outward current is positive; thus, the arrow. We assume that the dimensions
of the cell are small enough so that spatial variations in the membrane potential can be neglected.
(B) Under these conditions, the cell can be reduced to a single RC compartment in series with an ideal
current source fiy;.

It is straightforward to describe the dynamics of this circuit by applying Kirchhoff's
current law, which states that the sum of all currents flowing into or out of any electrical
node must be zero (the current cannot disappear, it has to go somewhere). The current across
the capacitance is given by expression 1.3. The current through the resistance is given by
Ohm’s law,

I = et (1.4)

Note that the potential across the resistance is not equal to V,,,, but to the difference between
the membrane potential and the fictive battery V.o, which accounts for the resting potential.
Due to conservation of current, the capacitive and resistive currents must be equal to the
external one, or

de (t) Vm(t) - Vrcsl

C T + R = Iinj(1) . (1.5)
With T = RC, with units of Q-F = sec, we can rewrite this as
dV, @)
r—d'—";—— = = V(1) + View + Rlin(t) . (1.6)

A minor, but important detail is the sign of the external current (after all, we could have
replaced + /iy by —Ijy; in Eq. 1.6). By convention, an outward current, that is positive
charge flowing from inside the neuron to the outside, is represented as a positive current.
An outward going current that is delivered through an intracellular electrode will make the
inside of the cell more positive; the physiologist says that the cell is depolarized. Conversely,
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an inward directed current supplied by the same clectrode, plotted by convention in the
negative direction, will make the inside more negative, that is, it will hyperpolarize the
cell. If the current is not applied from an external source but is generated by a membrane
conductance, the situation is different (see Chap. 5).

Due to the existence of the battery V., the electrical diagram in Fig. 1.2B does not,
formally speaking, constitute a passive circuit, since its current-voltage (/-V) relationship
is not restricted to the first and third quadrants of the /-V plane. This implies that
power is needed to maintain this /-V relationship, ultimately supplied by the differential
distributions of ions across the membrane. Because the /-V relationship has a nonzero,
positive derivative for every value of V,,, it is known as an incrementally passive device.
This point is not without interest, since it relates to the stability of circuits built using such
components (Wyatt, 1992). We here do not take a purist point of view, and we will continue
to refer to a membrane whose equivalent circuit diagram is similar to that of Figs. 1.1B and
1.2B as passive.

Equation 1.6 is known as the membrane equation and constitutes a first-order, ordinary
differential equation. With the proper initial conditions, it specifies an unique voltage
trajectory. Let us assume that thc membrane potential starts off at V,,(1 = 0) = Vieqy.
We can replace this into Eq. 1.6 and see that in the absence of any input (/i = 0)
this assumption yields dV,,/dt = 0, that is, once at Vi, the system will remain at
Viest in the absence of any input. This makes perfect sense. So now let us switch on, at
t = 0, a step of current of constant amplitude /. We should remember from the theory of
ordinary differential equations that the most general form of the solution of Eq. 1.6 can be
expressed as

V() = v()e_'/’ + v (1.7)

where vy and v, depend on the initial conditions. Replacing this into Eq. 1.6 and canceling
identical variables on both sides leaves us with

V) = View + Rlp. (1.8)

We obtain the value of vy by imposing the initial condition V,,(t = 0) = vg + vy = Vegq.
Defining the steady-state potential in response to the current as Vi, = R, we have solved
for the dynamics of V,, for this cell,

V() = Voo (1 — € /) 4 Ve . (1.9)

This equation tells us that the time course of the deviation of the membrane potential from
its resting state, that is, V,,, (1) — Vieqt, is an exponential function in time, with a time constant
equal to T. Even though the current changed instantaneously from zero to Iy, the membrane
potential cannot follow but plays catch up. This is demonstrated graphically in Fig. 1.3.
How slowly V,, changes is determined by the product of the membrane resistance and the
capacitance; the larger the capacitance, the larger the current that goes toward charging up
C. Note that 7 is independent of the size of the cell,

T =RC =R,C,. (1.10)

As we will discuss in considerable detail in later chapters, passive time constants range
from 1 to 2 msec in neurons that are specialized in processing high-fidelity temporal
information to 100 msec or longer for cortical neurons recorded under slice conditions. A
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typical range for T recorded from cortical pyramidal cells in the living animal is between
10 and 20 msec.

Remember the origin of the membrane capacitance in the molecular dimensions of the
bilipid membrane. A thicker membrane would lead to a smaller value for C,, and faster
temporal responses.?

The final voltage level in response to the current step is RIy + Vi (from Ohm’s law).
If Iy > O, the cell will depolarize (that is, Vi, > Viest), Whereas for Iy < 0, the converse
occurs. The resistance R is also termed the input resistance of the cell; the larger R, the
larger the voltage change in response to a fixed current. The input resistance at the cell bodies
of neurons, obtained by dividing the steady-state voltage change by the current causing it,
ranges from a few megaohms for the very large motoneurons in the spinal cord to hundreds
of megaohms for cortical spiny stellate cells or cerebellar granule cells.

1. This is called in vivo. Such experiments need to be distinguished from the cases in which a very thin slice is taken from an
animal’s brain, placed in a dish, and perfused with a nutrient solution. This would be termed an in vitro experiment.

2. As an aside to the neuromorphic engineers among us designing analog integrated electronic circuits, C,, = 1 ,(,LF/cm2 is
about 20 times higher than the specific capacitance obtained by sandwiching a thin layer of silicon dioxide between two layers of
poly silicon using a standard 2.0 or 1.2 m CMOS process (Mead, 1989).
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What happens if, after the membrane potential reaches its steady-state value V, the
current is switched off at time #,¢? An analysis similar to the above shows that the membrane
potential returns to V. with an exponential time course; that is,

V() = Vooe_(t_tnf”/r + Viest (1.11)

fort > t.g. (This can be confirmed by placing this solution into Eq. 1.6; see also Fig. 1.3A.)

Now that we know the evolution of the membrane potential for a current step, we would
like to know the solution in the general case of some time-dependent current input [iy;(¢).
Are we condemned to solve Eq. 1.6 explicitly for every new function Iiy;(f) that we use?
Fortunately not; because the RC circuit we have been treating here is a shift-invariant, linear
system, we can do much better.

1.3 RC Circuits as Linear Systems

Linearity is an important property of certain systems that allows us—in combination
with shift invariance—to completely characterize their behavior to any input in terms of
the system’s impulse response or Green’s function (named after a British mathematician
living at the beginning of the nineteenth century). Since the issue of linear and nonlinear
systems runs like a thread through this monograph, we urge the reader who has forgotten
these concepts to quickly skim through Appendix B, which summarizes the most rele-
vant points.

1.3.1 Filtering by RC Circuits

Let us compute the voltage response of the RC circuit of Fig. 1.2B in response to a
current impulse §(¢). We will simplify matters by only considering the deviation of the
membrane potential from its resting state V.. Here and throughout the book we use
V(1) = V,,(t1) — V,eq when we are dealing with the potential relative to rest and reserve
V.. (t) for the absolute potential. This transforms Eq. 1.6 into

dzt(t) =—-V(#)+ Rs@). (1.12)

We can transform this equation into Fourier space, where 1% (f) corresponds to the Fourier
transform of the membrane potential (for a definition, see Appendix B). Remembering that

the dV (¢)/dt term metamorphoses into i27x V(f)V(P), where i2 = —1, we have

V(f) =

~

1 +i2nfr (L.13)
A simple way to conceptualize this is to think of the input as a sinusoidal current of
frequency f; Iinj(t) = sin(2m ft). Since the system is linear, it responds by a sinusoidal
change of potential at the same frequency f, but of different amplitude and shifted in time:
V() = A(f)sinQrft+ é( f)). The amplitude of the voltage response at this frequency,
termed /i(f), is given by

R

A(f)| = ————r
tA(N)] it anfo

(1.14)

and its phase by
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¢(f) = —arctan(2nf 7). (1.15)

In the general case of an arbitrary input current, one can define the complex function A( D)
as the ratio of the Fourier transform of the voltage transform to the Fourier transform of the
injected current,

A(f) = . (1.16)

A( f) is usually referred to as the input impedance of the system. Its value for a sustained
or dc current input, /i( f = 0) = R, is known as the inpur resistance and is a real number.
It is standard engineering practice to refer to the inverse of the input impedance as the input
admittance and to the inverse of the input resistance as the input conductance in units of
siemens (S).

Does this definition of A make sense? Let us look at two extreme cases. If we subject
the system to a sustained current injection, the change in voltage in response to a sustained
input current / is proportional to R, Ohm’s law. Conversely, what happens if we use a
sinusoidal that has a very high frequency f? The amplitude of the voltage change becomes
less and less since at high frequencies the capacitance essentially acts like a short circuit.
In the limit of f — o0, the impedance goes to zero.

For intermediate values of f, the amplitude smoothly interpolates between R and 0.
In other words, our circuit acts like a low-pass filter, preferentially responding to slower
changing inputs and severely attenuating faster ones: |A( )] is a strictly monotonically
decreasing function of the frequency f.

Experimentally, the impedance can be obtained by injecting a sinusoidal current of
frequency f and measuring the induced voltage at the same frequency. The ratio of the
voltage to the current corresponds to | A ( £)|. The use of impedances to describe the electrical
behavior of neurons and, in particular, of muscle cells has a long tradition going back to the
1930s (Cole and Curtis, 1936; Falk and Fatt, 1964; Cole, 1972).

The result of such a procedure, carried out in a regular firing cell in a slice taken from
the visual cortex of the guinea pig, is shown in Fig. 1.4. Carandini and his colleagues
(1996) injected either sinusoidal currents or a noise stimulus into these cells and recorded
the resultant somatic membrane potential (in the presence of spikes). Given their very fast
time scale, somatic action potentials do not contribute appreciably to the total power of the
voltage signal. Indeed, when stimulating with a sine wave at frequency f, the power of
the voltage response at all higher frequencies was only 3.8% (median) of the power of the
fundamental f. This implies that when judged by the membrane potential and not by the
firing rate, and only considering input and output at the soma, at least some cortical cells
can be quite well approximated by a linear filter (Carandini et al., 1996).

This is surprising, given the presence of numerous voltage-dependent conductances at
the soma and in the dendritic tree. It is, however, not uncommon in neurobiology to find
that despite of—or, possibly because of—a host of concatenated nonlinearities, the overall
system behaves quite linearly (see Sec. 21.1.3). Sometimes one has the distinct impression
that evolution wanted to come up with some overall linear mechanism, despite all the
existing nonlincarities.

We will study later how adding a simple, absolute voltage threshold to the RC compart-
ment that gives rise to an output spike accounts surprisingly well for the spiking behavior
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of such cells. This simplest model of a spiking neuron, known as a leaky integrate-and-fire
unit, is so important that it deserves its own detailed treatment in Chap. 14.

We can recover the Green’s function /() of the RC compartment by applying the inverse
Fourier transform to Eq. 1.13, which results in

h(t) = ée—'/t (1.17)

for + > 0 and O for negative times (the units of the Green’s function are ohms per second
(§2/sec)). Conceptually, the extent of this filter, that is, the temporal duration over which this
filter is significantly different from zero, indicates to what extent the distant past influences
the present behavior of the system. For a decaying exponential as in an RC circuit, an event
that happened three time constants ago (at t = —37) will have roughly 1/20 the effect of
something that just occurred (Fig. 1.3B). This is expected in a circuit that implements a
low-pass operation. Input is integrated in time, with long ago events having exponentially
less impact than more recent ones.

1.4 Synaptic Input

So far, we have not considered how the output of one neuron provides input to the next
one. Fast communication among two neurons occurs at specialized contact zones, termed
synapses. Synapses are the elementary structural and functional units for the construction of
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neuronal circuits. Conventional point-to-point synaptic interactions come in two different
flavors: electrical synapses—also referred to as gap junctions—and the much more common
chemical synapses. At about 1 billion chemical synapses per cubic millimeter of cortical
grey matter, there are lots of synapses in the nervous system (on the order of 10'° for a human
brain). In order to give the reader an appreciation of this, Fig. 1.5 is a photomicrograph of a
small patch of the monkey retina at the electron-microscopic level, with a large number of
synapses visible. Synapses are very complex pieces of machinery that can keep track of their
history of usage over considerable time scales. In this chapter, we introduce fast, voltage
independent chemical synapses from the point of view of the postsynaptic cell, deferring a
more detailed account of synaptic biophysics, as well as voltage dependent synapses and
electrical synapses, to Chap. 4, and an account of their adapting and plastic properties to
Chap. 13.

Upon activation of a fast, chemical synapse, one can observe a rapid and transient change
in the postsynaptic potential. Here, postsynaptic simply means that we are observing this
signal on the “far” or “output” side of the synapse; the “input” part of a synapse is referred to
as the presynaptic terminal. When the synapse is an excitatory one, the membrane potential
rapidly depolarizes, returning more slowly to its resting state: an excitatory postsynaptic
potential (EPSP) has occurred. Conversely, at an inhibitory synapse, the membrane will
typically be transiently hyperpolarized, resulting in an inhibitory postsynaptic potential
(IPSP). These EPSPs and IPSPs are caused by so-called excitatory and inhibitory postsy-
naptic currents (EPSCs and IPSCs), triggered by the spiking activity in the presynaptic cell.

Figure 1.6 illustrates some of the properties of a population of depolarizing synapses
between the axons of granule cells, also called mossy fibers, and a CA3 hippocampal

Fig. 1.5 SYNAPSES AMONG RETINAL NEU-
RONS  Electron microscopic photograph of a
few square micrometers of tissue in the central
portion of the retina in the monkey. Here a
midget bipolar cell (MB) makes two ribbon
synapses onto a midget ganglion cell (MG). It
is surrounded by nine processes belonging to
amacrine cells (A; to Ag). Some of these feed
back onto the bipolar cell (e.g., Ag), some feed
forward onto the ganglion cell (e.g., A} ), some
do both, and some also contact each other (e.g.,
A — Aj). Since neither the bipolar cell nor
the amacrine cell processes have been shown
to generate action potentials, these synapses
are all of the analog variety, in distinction to
synapses in the more central part of the ner-
vous system that typically transform an action
potential into a graded, postsynaptic signal.
Reprinted by permission from Calkins and
Sterling (1996).
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Fig. 1.6 A Fast ExciTaTORY SYNAPTIC INPUT  Excitatory postsynaptic current (EPSC) caused
by the simultaneous activation of synapses (arrow) madc by the mossy fibers onto CA3 pyramidal
cells in the rodent hippocampus (Brown and Johnston, 1983). This classical experiment showed how
a central synapse can be successfully voltage clamped. (A) The voltage-clamp setup stabilizes—via
electronic feedback control—the membrane potential at a fixed value. Herc four experiments are
shown, carried out at the holding potentials indicated at the left. The current that is drawn to keep
the membrane potential constant, termed thc clamp current, corresponds to the negative EPSC. It
is maximal at negative potentials and reverses sign around zero. The synaptic current rises within
1 msec to its peak value, decaying to baseline over 20-30 msec. The experiments were carried out in
the presence of pharmacological agents that blocked synaptic inhibition. (B) When the peak EPSC
is plotted against the holding potential, an approximately linear relationship emerges; the regression
line yields an x-axis intercept of —1.9 mV and a slope of 20.6 nS. Thus, once the synaptic reversal
potential is accounted for, Ohm’s law appears to be reasonably well obeyed. We conclude that synaptic
input is caused by a transient incrcase in the conductance of the membrane to certain ions. Reprinted
by permission from Brown and Johnston (1983).

pyramidal cell.* The figure is taken from an experiment by Brown and Johnston (1983),
which demonstrated for the first time how a synapse within the central nervous system could
be voltage clamped. The voltage-clamp technique was previously used on the very large
synapse made between the axonal terminals of motoneurons and the muscle, the so-called
neuromuscular junction (Katz, 1966; Johnston and Wu, 1995). It allows the experimentalist
to stabilize the membrane potential (via a feedback loop) at some fixed value, irrespective
of the currents that are flowing across the membrane in response to some stimulus. This
allows the measurement of EPSCs at various fixed potentials (as in Fig. 1.6). The EPSC
has its largest value at a holding potential of —65 mV, becoming progressively smaller and
vanishing around 0 mV. If the membrane potential is clamped to values more positive than
zero, the EPSC reverses sign (Fig. 1.6A). When the relationship between the peak current
and the holding potential is plotted (Fig. 1.6B), the data tend to fall on a straight line that
goes through zero around — 1.9 mV and that has a slope of 20.6 nS.

What we can infer from such a plot is that the postsynaptic event is caused by a
temporary increase in the membranc conductance, here by a maximal increase of about 20 nS

3. It should be pointed out that we are here looking at a population of synapses, made very close to the soma of the pyramidal
cell, thereby minimizing space-clamp problems.
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(due to simultaneous activation of numerous synapses) in series with a so-called synaptic
reversal battery or potential, Eqy, = —1.9 mV (since the conductance change is specific
for a particular class of ions). Spiking activity in the presynaptic cell triggers, through a
complicated cascade of biophysical events (further discussed in Chap. 4), a conductance
change in the membrane of the postsynaptic cell. Typically, the conductance gsyn(t)
transiently increases within less than 1 msec, before this increase subsides within 5 msec.
The equivalent electrical circuit diagram of a synapsc embedded into a patch of neuronal
membrane is shown in Fig. 1.7A. It is important to understand that from a biophysical,
postsynaptic point of view, a synapse does not correspond to a fixed current source—in
that case the slope of the -V curve in Fig. 1.6 should have been zero—but to a genuine
increase in the membrane conductance. As we will reemphasize throughout the book, this
basic feature of the neuronal hardware has a number of important functional consequences.

Because of the existence of the synaptic battery, the driving potential across the synapse
is the difference between Egy, and the membrane potential. The postsynaptic current due
to a single such synapse is given by Ohm’s law

Isyn = gsyn(’)(vm(’) - Esyn) . (1.18)

Inserting this synapse into a patch of membrane (Fig. 1.7A) gives rise to the following
ordinary differential equation (on the basis of Kirchhoff’s current law):

dv, Vin — Vies
C—2 + gyn() (Vi — Egpn) + ———2 =0 (1.19)

dt R

or, with T = CR, the passive membrane time constant in the absence of any synaptic input,
we can transform this into

A) B)

I
IT
3<

2
I
I

Esyn -l- -1 Vresl s Vrest

| .

Fig. 1.7 EQUIVALENT ELECTRICAL CIRCUIT OF A FAST CHEMICAL SYNAPSE (A) Electrical
model of a fast voltage-independent chemical synapsc. This circuit was put forth to explain events
occurring at the neuromuscular junction by Katz (1969). Remarkably, all fast chemical synapses in
the central nervous system, with the exception of the voltage-dependent NMDA receptor-synaptic
complex, operate on the same principle. Activation of the synapsc leads to the transient opening of
ionic channels, selective to certain ions. This corresponds to a transient increase in the membrane
conductance geyn (1) in scries with the synaptic reversal potential Egyq, shown here in paralle] with a
passive membrane patch. (B) If the evoked potential change is small relative to the synaptic reversal
potential, the synapse can be approximated by a current source of amplitude gqyn (1) Egyn. In general,
however, this will not be the case and synaptic input must be treated as a conductance change, a fact
that has important functional consequences.
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AV,
7T = (1 + Rguyn(1)) Vi + Reuyn(D) Exyn + Vres (1.20)

Frequently the time course of synaptic input is approximated by a so-called « function.
1t describes the transient behavior of synaptic input for a number of preparations, such as
nicotinic input to vertebrate sympathetic ganglion cells or the synaptic input mediated by
the mossy fibers (Brown and Johnston, 1983; Williams and Johnston, 1991; Yamada, Koch,
and Adams, 1998), reasonably well:*

Goyn(t) = const - te~ !/ foesk (1.21)

We can now integrate Eq. 1.20 using the same values for fpeq and gpeax, but three different
values for the synaptic reversal potential (Fig. 1.8).

If Egyy > Viest» the synaptic current is inward and—by convention—negative and will
act to depolarize the membrane. This is the hallmark of an EPSP, as observed at the most

A) 1 T T T T Fig. 1.8 ACTION OF A SINGLE SYNAPSE
INSERTED INTO A MEMBRANE Three
0.8 1 different types of synaptic inputs and their
differential effect on the membrane po-
06 7 tential. (A) Time course of the synaptic-
g, induced conductance increase, here with
04 | T tpeak=0.5 msec and gpesxe = 1 nS
(Eqg. 1.21). The synapse is inserted into a
0.2 | 1  patch of membrane (Fig. 1.7A) with R =
100 M2, C = 100 pF, and T = 10 msec.
0 ' ‘ — (B) Postsynaptic current in response to the
0 10 20 30 40 conductance increase if the synaptic rever-
50 S ; . : ; sal potential is positive (Egyn = 80 mV rel-
B) ative to rest; solid line), negative (Egy, =
—20 mV; dotted line), and zero (so-called
shunting inhibition; dashed line). By con-
vention, an inward current that depolarizes
i ] the cell is plotted as a negative current.
(C) Associated EPSP (solid line) and IPSP
(lower dashed line), relative to Vieg, solved
by numerical integration of Eq. 1.20. No-
tice that the time course of the postsynap-~
-100 R T T tic potential is much longer than the time
10 20 30 40 course of the corresponding postsynaptic
current due to the low-pass nature of the
C) 1 T T T membrane. Shunting inhibition by itself
does not give rise to any change in potential
{center dashed line).

(nS)

(PA) 50 H i

0 10 20 30 40
t (msec)

4. gpeak, its peak value, attained at f = Ipeak, defines const = gpeak e' / Tpeak-
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common fast, excitatory synapse in the brain, the so-called non-NMDA synapse (named
after its insensitivity to N-methyl-n-aspartic acid) that uses the neurotransmitter glutamate
with a reversal potential about 80—-100 mV above the resting potential of the cell (for more
details, see Sec. 4.6).

If the converse occurs, that is, Egyn < Vieq. the current is outward and the membrane
is hyperpolarized, away from the threshold for spike generation. In the central nervous
system, this is typically caused by a slower form of inhibition due to y-aminobutyric acid
B receptors (GABApR) at synapses that release the neurotransmitter GABA and that let
potassium ions out of the ccll and have a reversal potential 10-30 mV below the resting
potential (Fig. 1.8).

What happens if a synapse is activated whose battery potential is close to the membrane
potential, that is, Eqyq = Vi ? If the membrane is at rest, no driving potential exists across
the synaptic conductance, since V,, — Egn ~ 0, and the membrane potential remains
unperturbed. But the total conductance of the membrane increases by gqyn (7).

If this system is now depolarized by excitatory input, activation of this silent or shunting’
inhibition causes a reduction in the EPSP amplitude.

Activation of a GABA 4 synapse, one of the most common forms of fast inhibition in
cortex and associated structures, increases the membrane conductance for chloride ions
and has a reversal potential in the neighborhood of many cells’ resting potential, thereby
implementing a form of shunting inhibition.

How do we deal with multiple synaptic inputs? Since currents add, we can extend Eq. 1.19
in a straightforward manner by placing the synapses in parallel with the RC circuit,

d V,,, i’ Vrest - Vm

dt = ngyn,i(t)(Es_vn.i - Vm) + T— (122)
' i=0

C

where the sum is taken over all synapses (each of which can have its own reversal potential).
Of course, this is very reminiscent of the linear summation of inputs in the “units” of standard
neural network theory (see Sec. 14.4).

1.5 Synaptic Input Is Nonlinear

What is not immediately apparent from Eq. 1.22 is the fact that synaptic input as conductance
change is of necessity nonlinear; that is, the change in membrane potential is a nonlinear
function of the synaptic input. Yet this turns out to be crucial. From the point of view
of information processing, a linear noiseless system cannot create or destroy information.
Whatever information is fed into the system is available at the output. Of course, any systcm
existing in the real world has to deal with noise, which places restrictions on the amplitude
of signals that can be discriminated. Therefore in a noisy linear system, information can
be destroyed. But what is needed in a system that processes information are nonlinearities
that can perform discriminations and decistons. Similarly, in order for a digital system to
be Turing universal, a nonlinearity such as negation and logical ANDing is required. As we
will see later on, one cver-present nonlinearity is the voltage threshold for spike initiation.
As we will see now, another nonlinearity that comes for frec with synaptic hardware is
saturation.

5. Because both excitatory and inhibitory fast synapses act to increase a postsynaptic membrane conductance, all of them
can properly be said to he shunting. However, in this book we follow widespread usage and only refer to shunting inhibition as a
conductance increase with a reversal potential in the neighborhood of the cell’s resting potential.
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1.5.1 Synaptic Input, Saturation, and the Membrane Time Constant

The nature of this effect can be perfectly well understood for a single synaptic input. If we
consider the change in membrane potential relative to rest in response to a slowly varying
synaptic input (that is, we can reduce ggyn(f) 10 gsyn), we can express the dynamics of V as

,dV &syn Esyn
T —=-V+—=—"= 1.23
dt Gin ¢ )
wherc the new value of the input conductance is
1
Gin = &syn T+ E (1.24)

and the new value of the time constant in the presence of synaptic input is
o C  RC
B Gin 1+ Rgsyn .

In other words, each synaptic input, whether excitatory, shunting, or inhibitory, increases
the synaptic input conductance, thereby decreasing the membrane time constant (Fig. 1.9).
This is, of course, equally true when one considers the cffect of numerous simultaneous
synaptic inputs. As we shall see further along in this book, under physiological conditions
neurons can be bombarded with massive synaptic input, which will lower the membrane
time constant significantly, as compared to the value of T measured under slice conditions
in the absencc of normal synaptic input.

How does the membrane potential behave as a function of gy, ? Solving for Eq. 1.23
yields for the steady-state potential

(1.25)

= RgsynEsyn
14+ Rgoyn

If the synaptic input is small, that is, if Rgyn, < | or gy, <« 1/R, the denominator is
roughly equal to I, and the EPSP is

(1.26)

[ ]

V 2 Rgeyn Exyn - (1.27)

Here, the input can be approximated to a fair degree by a constant current source of amplitude
8syn Esyn. Doubling the input under these conditions leads to a doubling of the voltage
change.

As the EPSP becomes larger and larger, the driving potential across the synaptic
conductance V,, — Eqy, becomes smaller and smaller, disappearing eventually at V,, = Ey,.
No matter how large the conductance increase is made, there is no more potential to drive
ions across the membrane. Here, Rgsy, > | (or equivalently, g, >> 1/R; that is, the
synaptic input is considerably larger than the input conductance), and we have

Rgsyn Esyn

Vay —— = Eg,. (1.28)
Rgsyn e

The membrane potential has saturated at the synaptic reversal potential (Fig. 1.9).

1.5.2 Synaptic Interactions among Excitation and Shunting Inhibition

As we are devoting the entire Chap. 5 to the topic of synaptic interaction, we focus here on
the specific interaction between excitatory input and shunting inhibition occurring within a
single RC compartment (Fig. 1.10A). For the sake of simplicity, we assume that at r = 0,
both excitation (of constant amplitude g, and battery F,) and shunting inhibition (of constant
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A) 150 T Fig. 1.9 Synapric INPUT, SATURATION, AND

THE TiME ConsTANT The effect of varying
the synaptic input conductance on (A) the in-
put conductance Gy, (Eq. 1.24), (B) the mem-
brane time constant 7’ (Eq. 1.25), and (C)
the steady-state change in membrane potential
Vo (Eq. 1.26) in a single-compartment model
(Fig. 1.7A) as a function of gy,. Conceptu-
ally, if we assume an excitatory synapse (with
Egn = 80 mV) and a fixed peak amplitude
of g, = 1 nS, the x axis is logarithmic in
the number of synapses involved in the overall
synaptic event. Note that 7’ as well as Gy, will
increase irrespective of whether the synapses
are depolarizing, shunting, or hyperpolarizing.
The fact that the input to neurons comes in the
form of a change in the membrane conductance
implies that the very structure of the neuronal
hardware changes with the input, since the dy-
namics of the cell speeds up in the presence of
strong synaptic input.

100 |

(nS) 50

C) 80 —r—

Vo o 49

(mV)

1 10 100
g,,n (0S)

amplitude g; and battery E; = V) are turned on and remain on. Using Kirchhoff’s current
law, we can express the change in membrane potential relative to V. in this circuit as

dav Vv
C— =g (E, - V)—giV——. 1.29
77 = 8e( )-8 R (1.29)
As in Eq. 1.23, we can transform this into
dv g.E.
T'—=-V+ 1.30
dt Gin ( )
where the input conductance in the presence of the two synaptic inputs is
1
G :ge+gi+‘§ (L.31)
and the time constant 1s
T = < (1.32)
G .

The solution to this is a low-pass filter function multiplied with some constant, or
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1 Fig.1.10 NONLINEAR INTERACTION

T BETWEEN EXCITATION AND SHUNT-
ING INHIBITION Inhibitory synaptic
g c input of the shunting type, that is,
® — % RV, whose reversal potential is close to
the cell’s resting potential, can imple-

.

A)
g;

E; E, ment a form of division. (A) This is
demonstrated for an RC circuit (R =
100M€2, C = 100 pF) in the presence
of both excitation (with battery E, =
80 mV) and shunting inhibition (with
E; = 0). We are here only consider-
ing the change in membrane potential
B) relative to Vie. (B) Time course of
the membrane depolarization in re-

8 . : . sponse to a step onset of both exci-

g,=0 — tation (of amplitude g, = 1 nS) and
6 | o shunting inhibition (for three values
of gi = 0,1, and 10 nS). One effect
v i of increasing g; is an almost propor-
4 : tional reduction in EPSP amplitude.
(mV) g,=10ns A further consequence of increasing
2 the amount of shunting inhibition is

to decrease the time constant 7/, from
its original 10 msec in the absence of

0 10 2? 56‘ 40 any synaptic input fo 9 msec in the
presence of only excitation to 4.8 msec

t{msec) in the presence of excitation and the 10
times larger shunting inhibition.
E /
V) = 8201 — ety (1.33)
Gin

(This can be checked by replacement into Eq. 1.30.) The steady-state potential for ¢ — oo
converges to

_ g.RE,

" 1+gR+gR’
What is important to realize is that the numerator does not include any contribution from the
shunting inhibition (since the synaptic reversal potential is equal to the resting potential);
g: only appears in the denominator. Increasing g; therefore reduces the EPSP from its peak
value in a division-like manner. This is the reason shunting inhibition is frequently also
referred to as divisive inhibition (Bloomfield, 1974; Torre and Poggio, 1978). Of course,
due to the offset in the denominator, g; only implements a true division in the limit of
gi > g. + 1/R. Under these conditions,

(1.34)

o0

(1.35)

Increasing g; also affects the speed with which the cell converges to its steady-state, since
the time constant decreases with increasing shunting inhibition, as illustrated in Fig. 1.10B.

Finally, let us consider the voltage gain, that is, the sensitivity of the output to variations
in the excitatory input: by how much does the amplitude of the EPSP vary if g, varies? This
amounts to computing
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dVe  RE.(1+giR)

dge  (1+gR+gR)?
We see that the gain is maximal in the absence of any shunting inhibition, becoming
progressively smaller as g; increases. In the limit of g; — 00, the gain becomes zero;

in the presence of massive amounts of inhibition, the excitatory input becomes swamped
and is completely dominated by inhibition.

(1.36)

1.5.3 Gain Normalization in Visual Cortex and Synaptic Input
One example demonstrating the use of synaptic conductance changes to implement a
nonlinear operation crucial to the behavior of neurons in visual cortex has becn proposed
by Carandini and Hecger (1994).

The standard model of a simple cell in primary visual cortex (V1) is that its firing rate is
a linear function of the visual input, using a Gabor filter for its spatial receptive field and
some low-pass or band-pass filter to account for its temporal behavior (Wandell, 1995).
While much evidence has accumulated in favor of this position, many V1 neurons do show
a number of nonlinearities: (1) the response saturates with increasing visual contrast, (2)
at higher contrast level, the response occurs earlier, and (3) superposition does not hold;
that is, the response of the cell to a bar at its optimal orientation superimposed onto a bar
orthogonal to its optimal orientation is not cqual to the sum of the response to the two bars
when presented by themselves. Carandini and Heeger (see also Nelson, 1994) account for
this behavior by using a simple RC model for a V1 cell, as in Fig. 1.10A, augmented by
an input from a hyperpolarizing synapse. Their intriguing idea is to have the amplitude
of the shunting inhibition depend on the response rate of the entire population of cells at
this particular location in space, summed over all orientations and direction of motions
(Fig. 1.11). At high contrasts when g, is large, the network is very active and g; is also very
large; this leads to the divisive normalization witnessed in Fig. 1.10B as well as to areduction
in the time constant, explaining the advance of the response at high contrast levels. Heeger,
Simoncelli, and Movshon (1996) have argued that the very same normalization mechanism
is also operating in other cortical areas. Note that a more physiological implementation
of this idea needs to take the additional conductance due to massive, excitatory recurrent
feedback among cortical cells into account (Ahmed et al., 1994; Douglas et al., 1995).

While the Carandini and Heeger (1994) model is elegant, leads to a simple mathematical
model of a cortical cell, and can account for much of the data (Fig. 1.11), it does have one
serious flaw that we can only allude to here. As will become apparent in Sec. 18.5 (Kemell,
1969, 1971; Holt and Koch, 1997), shunting inhibition acts in a linear, subtractive manner
when treated within the context of a spiking neuron, rather than in the saturating manner we
are accustomed to from a passive membrane. This is a natural consequence of the biophysics
of spike generation and throws doubt onto the hypothesis that contrast normalization is
implemented using the natural properties of conductance-increasing synapses.

1.6 Recapitulation

In this introductory chapter, we meet some of the key actors underlying neuronal information
processing. Basic to all cells is the capacitance inherent in the bilipid layer, limiting how
quickly the membrane potential can respond to a fixed input current. The simplest of all
neuronal models is that of a single compartment that includes a resistance, in series with a
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Fig. 1.11 GAIN NORMALIZATION IN NEURONS IN VisUuAL CORTEX Response properties of a
simple cell in primary visual cortex of the monkey in response to drifting sinusoidal gratings (Carandini
and Heeger, 1994). (A) through (D) One cycle of the response to gratings of contrast 0.125, 0.25,
0.5, and 1.0. The cell saturates with contrast (doubling the contrast doubles the neuronal response
when going from A to B, but not when going from C to D) and advances its response (a shift of
about 50 msec occurs between A and D). (E) Amplitude and (F) Phase of the fundamental Fourier
component to sinusoidal gratings drifting at 6 Hz. Shown are the responses of the cell at its preferred
orientation (open symbols) and 20° away from the preferred orientation (solid symbols). Error bars
represent +1 standard deviation and the solid lines correspond to the best fit of the model equation
that uses shunting inhibition, activated via massive feedback, to carry out this gain normalization.
Reprinted by permission from Carandini and Heeger (1994).

battery, and the capacitance. It can be completely described by a linear, low-pass filter. As
we will see in a later chapter, such an RC circuit, augmented by a simple voltage threshold,
constitutes one of the simplest yet also most powerful models of a spiking neuron: the leaky
integrate-and-fire unit.

We introduced fast chemical synapses, the stuff out of which computations arise.
Chemical synapses convert the presynaptic voltage signal—via a chemical process—into a
postsynaptic electrical signal, via a change in the membrane conductance specific to certain
ions. Such a synapse can be described by a time-dependent synaptic conductance ggy, (f) and
a synaptic battery Eyn. In general, synapses cannot be treated as constant current sources.

Chemical synapses, similar to an operational amplifier wired up as a follower, isolate the
electrical properties of the postsynaptic site from the presynaptic one. This allows synapses
to link neurons with very different electrical impedances. Furthermore, the amplitude,
duration, and sign of the postsynaptic signal can be quite different from those of the
presynaptic one. Electrical synapses, discussed in Sec. 4.10, share none of these properties.

The fact that synapses act by changing, usually increasing, the postsynaptic membrane
conductance has a number of important consequences. It aliows for the natural expression
of several nonlinear operations, in particular saturation and gain normalization. As an
example, we saw how shunting inhibition, mediated by a type of synapse whose synaptic
reversal potential is close to the cell’s resting potential, acts similar to division. We also
studied how synaptic input that increases the postsynaptic membrane conductance for some
combinations of ions, no matter what its reversal potential, acts to decrease the cell’s input
resistance and thus its membrane time constant. As postulated by Carandini and Heeger
(1994), the effect of massive feedback synaptic input might, in a very physiological manner,
implement gain normalization in cortical areas.
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In the previous chapter, we briefly met some of the key actors of this book. In particular, we
introduced the RC model of a patch of neuronal membrane and showed an instance where
such a “trivial” model accounts reasonably well for the input-output properties of a neuron,
as measured at its cell body (Fig. 1.4). However, almost none of the excitatory synapses are
made onto the cell body, contacting instead the very extensive dendritic arbor. As we will
discuss in detail in Chap. 3 (see Fig. 3.1), dendritic trees can be quite large, containing up
to 98% of the entire neuronal surface area. We therefore need to understand the behavior
of these extended systems having a cablelike structure (Fig. 2.1).

sSQna

Fig. 2.1 CLOSEUP VIEW OF DENDRITES Two
reconstructed dendrites of a spiny stellate cell in the
visual cortex of the cat. The reconstructions were
carried out by a very laborious serial electron mi-
croscopic -procedure. Notice the thin elongated,
thomlike structures, dendritic spines. The vast
majority of neuronal processes, whether axons or
dendrites, possess such an elongated, cylindrical
geometry. Studying the spread of electrical cur-
rent in these structures is the subject of cable the-
ory. (A) Cross section of a branching dendrite.
(B) Three-dimensional view of another dendrite.
The black blobs are excitatory synapses and the
three clear blobs are inhibitory synapses. Reprinted
by permission from Anderson et al. (1994).
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The basic equation governing the dynamics of the membrane potential in thin and
clongated neuronal processes, such as axons or dendrites, is the cable equation. It originated
in the middle of the last century in the context of calculations carried out by Lord Kelvin,
who described the spread of potential along the submarine telegraph cable linking Great
Britain and America. Around the turn of the century, Herman and others formulated the
concept of Kernleitermodel, or core conductor model, to understand the flow of current
in nerve axons. Such a core conductor can be visualized as a thin membrane or sheath
surrounding a cylindrical and electrically conducting core of constant cross section placed
in a solution of electrolytes (see Fig. 2.2).

The study of the partial differential equations describing the evolution of the electrical
potential in these structures gave rise to a body of theoretical knowledge termed cable
theory. In the 1930s and 1940s concepts from cable theory were being applied to axonal
fibers, in particular to the giant axon of the squid (Hodgkin and Rushton, 1946; Davis
and Lorente de No, 1947).! The application of cable theory to passive, spatially extended
dendrites started in the late 1950s and blossomed in the 1960s and 1970s, primarily due to
the work of Rall (1989). In an appropriate gesture acknowledging his role in the genesis
of quantitative modeling of single neurons, Segev, Rinzel, and Shepherd (1995) edited an
annotated collection of his papers. to which we refer the interested reader. It also contains
personal recollections from many of Rall’s colleagues as well as historical accounts of the
carly history of this field.

We restrict ourselves in this chapter to studying linear cable theory, involving neuronal
processes that only contain voltage-independent components. In particular, we assume
that the membrane can be adequately described by resistances and capacitances (passive
membrane). Given the widespread existence of dendritic nonlinearities, it could be argued
that studying neurons under such constraints will fail to reveal their true nature. However,
it is also true that one cannot run before one can walk, and one cannot walk before one can
crawl. In order to understand the subtlety of massive synaptic input in spatially extended
passive and active cables, one first needs to study the concepts and limitations of linear
cable theory before advancing to nonlinear phenomena.

Cable theory, whether linear or nonlinear, is based on a number of assumptions concern-
ing the nature and geometry of neuronal tissue. Let us discuss these assumptions prior to
studying the behavior of the membrane potential in a single, unbranched, passive cable.

2.1 Basic Assumptions Underlying One-Dimensional Cable Theory

In a standard copper wire, electrons drift along the gradient of the electrical potential. In
axons or dendrites the charge carriers are not electrons but, in the main, one of two ionic
species, sodium and potassium, and, to a lesser extent, calcium and chloride. How can this
current be quantified?

1. Starting point for any complete description of electrical currents and fields must be
Maxwell’s equations governing the dynamics of the electric field E(x, y, z, ) and the
magnetic field B(x, y, z, #),> supplemented by the principle of conservation of charge

1. For a detailed account of alt the twists and turns of this story, see Cole (1972) and Hodgkin (1976). When reading these
down-to-earth monographs, on¢ becomes painfully aware of the very limited amount of real knowledge and insight gained during
decades of intensive experimental and theoretical research. Most of one’s effort is usually spent on pursuing details that turn out
to be irrelevant and in constructing and developing incorrect models.

2. We follow standard convention in using boldface variables for all vector quantities.
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Fig. 2.2 ELECTRICAL STRUCTURE OF A CABLE (A) Idealized cylindrical axon or dendrite at the
heart of one-dimensional cable theory. Almost all of the current inside the cylinder is longitudional
due to geometrical (the radius is much smaller than the length of the cable) and electrical factors
(the membrane covering the axon or dendrite possesses a very high resistivity compared to the
intracellular cytoplasm). As a conscquence, the radial and angular components of the current can
be neglected, and the problem of determining the potential in these structures can be reduced from
three spatial dimensions to a single one. On the basis of the bidomain approximation, gradients in the
extracellular potentials are neglccted and the cable problem is expressed in terms of the transmembrane
potential V,, (x, t) = V;(x, t)—V,.(B) Equivalent electrical structure of an arbitrary neuronal process.
The intracellular cytoplasm is modeled by the purely ohmic resistance R. This tacitly assumes that
movement of carriers is exclusively due to drift along the voltage gradicnt and not to diffusion. Here and
in the following the extracellular resistance is assumed to be negligible and V, is set to zero. The current
per unit length across the membrane, whether it is passive or contains voltage-dependent elements,
is described by iy, and the system is characterized by the second-order differential equation, Eq. 2.5.

(Feynman, Leighton, and Sands, 1964). As detailed in Rosenfalck’s thesis (1969), the
magnetic vector potential associated with the movement of charges during an action
potential in biological tissues only has a negligible effect ( 10~%) on the electric field and
can therefore safely be neglected. Indeed, it took the technological development of very
sensitive quantum devices (SQUIDs) to be able to measure the magnetic field associated
with massive electrical activity in the brain. So the first simplification involves neglecting
the magnetic field.
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2. This leaves us with three fundamental relationships governing electrodynamics in
neuronal structures.

a. Gauss’s law, stating that the divergence of the field E is identical to the charge density
normalized by the electrical permittivity €. Equivalently, Poisson’s equation, which
links the Laplacian of the electrical potential to the negative charge density normalized
by €, serves as well.

b. Charge conservation, that is, the sum of the flux of current through any closed surface
and the change of the charge over time inside this surface must be zero.

¢. An equation linking the electrical current to the electric field. In general, charged
carriers can move either by drift along an electric field or by diffusion, from a volume
of high carrier concentration into one of lower concentration, and the total current flow
is the sum of these two independent components. The mathematical expression of
this fact constitutes the Nernst-Planck electrodiffusion equation, treated in Sec. 11.3.
As discussed there, for almost all cases of interest the changes in concentration of
the various ions (Nat, K*, Ca’* and C17) are too small to measurably contribute to
current flow. Only in very thin fibers of less than 1 xm diameter does longitudinal
current flow due to concentration differences begin to play any role. In other words,
Ohm’s law is perfectly adequate to describe the electrical current moving within an
axon or dendrite.}

3. This is the starting point for most derivations of cable theory (Lorente de N6, 1947; Clark
and Plonsey, 1966, 1968; Plonsey, 1969 Rall, 1969b; Eisenberg and Johnson, 1970).

a. The dominant fraction of current inside a neuronal process, such as a dendrite or
axon, flows parallel to its longitudinal axis. Only a very small fraction of the current
flows across the neuronal membrane. This is true both for geometrical reasons—the
diameter of axons and dendrites being much smaller than their longitudinal extent—
as well as for electrical ones. As dectailed in Appendix A, the neuronal membrane is
all but impermeable to current flow. Charged carriers can only cross the membrane
through the ionic channels. The high transmembrane resisitivity stands in contrast to
the relatively small intracellular resistivity.

A major implication is that instead of having to solve for the voltage in three
dimensions, our problem is reduced to one of describing the voltage along a single
spatial dimension. In a careful comparison between the membrane potential derived
as the solution of Laplace’s equation in a three-dimensional cylindrical coordinate
system and the solution of the one-dimensional cable equation, Rall (1969b) showed
that the radial and angular membrane potential terms typically decay 10* times faster
than the components of the membrane potential along the axis. Fortuitously, we can
safely neglect two out of three dimensions for all of the cases considered in this book.

b. Electrical charge in the cytoplasm, no matter whether inside or outside the cell,
relaxes in a matter of microseconds or less. In other words, any capacitive effects
of the cytoplasm itself can be totally ignored on the millisecond or longer time
scale (inductive effects can be completely neglected; Scott, 1971). Thus, from an
electrical point of view, the extracellular as well as the intracellular cytoplasm can
be approximated by ohmic resistances.

3. This is analogous to the situation prevalent in a copper wire, where the current flow due to drift down the gradient of the
electrical potential exceeds by many orders of magnitude the current flow due to differences in the local densities of electrons.
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c. The solution of the equation for the electrical potential is still extremely complicated
if all the neuronal structures and membranes outside the dendrite or axon under
investigation are explicitly included. Fortuitously for modelers (but less so for
the electrophysiologist, who has to infer the neuronal activity of a cell from its
extracellular signature), the extracellular potential (1) usually is small (since the
small amount of current making it through the membrane encounters a relatively
large extracellular volume), and (2) decays over distances which are usually much
larger than the diameters of the fiber itself. This implies that the extracellular space
can be treated as a homogeneous dielectric, averaging over local inhomogeneities.
The problem of computing the membrane potential is therefore reduced to two
homogeneous domains, the extracellular and the intracellular ones.

The extracellularresistivity is often defined in the case when the external medium is
ashell of conducting cytoplasm surrounding the cable, a shell that can be characterized
by a resistance per unit length of cylinder r,.. For large external volumes (think of
the case of a single neuronal fiber placed in a bath solution) r, is assumed to be
zero. In this case, no extracellular voltage gradients exist and the entire extracellular
space is isopotential, V,(x, t) = const, which we set to zero. Including a uniform
extracellular resistivity complicates matters only slightly, and the solution of the cable
equation is qualitatively similar to the solution for r, = 0. Therefore, the membrane
potential V,,(x,t), defined as the intracellular potential minus the extracellular
potential (Eq. 1.1), is identical to the intracellular potential. Indeed, throughout the
book, we use these two variables interchangeably. Yet it should always be kept in
mind that the membrane potential corresponds to the difference in voltage across the
membrane separating the inside from the outside.

A timely research topic of considerable interest is a detailed investigation of
electrical coupling of realistically modeled neurons via the extracellular potential.
Lengthy experimental and theoretical studies have been carried out for the case of
two parallel axons. For this geometry, any direct electrical coupling is slight (the
extracellular potential due to a spike is in the 10 'V range; Clark and Plonsey, 1968,
1971; Marks and Loeb, 1976; Scott and Luzader, 1979; Barr and Plonsey, 1992; Bose
and Jones, 1995; Struijk, 1997). However, extracellular potentials recorded close to
dendritic trees can be much larger (up to a few mV) than those next to axons. Given
the extremely tight packing among neurons, this type of ephaptic* coupling could be
of functional relevance, yet almost no theoretical work has been carried out on this
subject (Lorente de NG, 1953; Hubbard, Llinds and Quastel, 1969; Holt, 1998).

At this stage, we represent the neuronal tissue with the help of a series of discrete
electrical circuits of the type shown in Fig. 2.2B. Without making any specific assumption
concerning the detailed nature of the neuronal membrane, we express the current per unit
length flowing through the membrane at location x as i,,(x, ). We can write down Ohm’s
law for the discrete circuit illustrated in Fig. 2.2B,

Vitx, 1) = Vi(x + Ax, t) = RI;(x, 1) (2.1)
or, in the limit of an infinitesimal small interval Ax, and with V,, = V,,
Vv,
—x, ) =—ry - Li(x,1), (22)
dx

4. Greek for “touching onto,” rather than synaptic, “touching together.”
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where r, = R/Ax is the intracellular resistance per unit length of cable with dimensions
of ohms per centimeter. /; is the intracellular core current flowing along the cable, assumed
to be positive when flowing toward the right, in the direction of increasing values of x.
Kirchhoff’s law of current conservation stipulates that the sum of all currents flowing into
and out of any particular node must equal zero. Applied to the node at x in Fig. 2.2B,
we have

inx,H)Ax + Li(x,t) — I;(x — Ax,t) =0 2.3)
or, in differential form in the limit that Ax — 0,
: al;
in(x, )y = ——(x,1). (2.4)
dx
Inserting the spatial derivative of Eq. 2.2 into Eq. 2.4 leads to
1 3%V, :
— (x,1) =ip(x,1). 2.9
r, 0x2

This second-order ordinary differential equation, together with appropriate boundary condi-
tions, describes the membrane potential in an extended one-dimensional cable structure with
an ohmic intracellular cytoplasm, regardless of the exact nature of the ncuronal membrane.

2.1.1 Linear Cable Equation
In Sec. 1.1, we discussed the nature of a patch of passive membrane and assumed that
the membrane current includes a capacitive (Eq. 1.3) and a resistive (Eq. 1.4) component
(Figs. 1.1 and 1.2). Including an external current term [;p;(x, 7), the membrane current per
unit length of the cable, i,,, is given by

Va6, 1) = Veewt | 3Vi(x, 1)

im(x. 1) = " + Cm Y

where r,, is the membrane rcsistance of a unit length of fiber, measured in units of ohms-
centimeter. If the electrical nature of the membrane is constant along the length of the
passive fiber under investigation (Fig. 2.3), we can replace i,, (x, t) on the right-hand side
of Eq. 2.5 with Eq. 2.6 and multiply both sides with r,, to arrive at

22 PVu(x, 1) _ Vu(x, 1)

X T

with the membrane time constant 7,, = r,C, and the steady-state space constant A =
(rm/ra) /2 We will discuss their significance forthwith.

Equation 2.7 is the linear cable equation, a partial differential equation, first order in
time and second order in space. This type of parabolic differential equation is quite similar
to the heat and diffusion equations. The behavior of all three is characterized by dissipation
and the absence of any wavelike solution with constant velocity. Parabolic differential
equations have a well-specified and unique solution if appropriate initial conditions, such
as the voltage throughout the cable at ¢ = () should be zero, or boundary conditions, such
as no current should leak out at either end of the cable, are specified. The cable equation is
fundamental to understanding the behavior of the membrane potential, the principal state
variable used for rapid intracellular communication in neurons. We will discuss its behavior
in both this chapter and the next.

As expressed in Eq. 2.7, a simple, unbranched cable has a nonzero resting potential V.
which does not vary with the position along the cable. For a homogeneous cable in the

+ (Vi (X, 1) = Viest) — T linj(x, 1), 27
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im(x,t)

Fig. 2.3 A SINGLE Passive CABLE Equivalent lumped electrical circuit of an elongated neuronal
fiber with passive membrane. The intracellular cytoplasm is described by an ohmic resistance per unit
length r, and the membrane by a capacitance ¢,, in parallel with a passive membrane resistance r,,
and a battery V.. The latter two components are frequently referred to as leak resistance and leak
battery. An external current [isj(x, 1) is injected into the cable. The associated linear cable equation
(Eq. 2.7) describes the dynamics of the electrical potential V,, = V; — V, along the cable.

absence of any input /;5i(x, f), the membrane potential throughout the cable will be equal
to a constant. The amplitude of V. varies between —50 and —90 mV, depending on cell
type and other circumstances, with the inside of the neuron being at the negative potential.
Viest Need not always be constant throughout the dendritic tree (see Sec. 18.3.4).

Because the resting potential is simply an offset, it is often set to zero. This can be thought
of as defining the membrane potential V,,(x, t) as relative to this resting potential. Very
often the cquations will be somewhat simplified when the potential is defined as relative to
Viest- We use the convention that V,,, (x, 1) refers to the absolute membrane potential, while
V(x, t) refers to the potential relative t0 Vi .

We should here also allude to the vexing question of units. The three voltage-independent
components of a passive cable are commonly specified in one of two ways. If they are
expressed as quantities per unit length, they are conventionally labeled

_ AR,
re = gy (2.8)
in units of £2/cm,
J— Rm
rm = o 2.9
in units of 2-cm and
Cm =Cp - md (2.10)

in units of F/cm. Using these variables has the advantage that the cable equation contains
no explicit terms depending on the diameter d of the cable.

The more common way, and the one we adopt throughout the book, is to specify these
quantities in units that are independent of the diameter of the fiber, using capital letters: the
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intracellular resistivity R;, the specific membrane resistance R,, and the specific membrane
capacitance C,, with dimensions of Q-cm, - cm? and F/cm?, respectively. For more
details, consult Appendix A.

2.2 Steady-State Solutions

Let us investigate the behavior of the cable equation in response to a current /i5;(x) injected
at location x via an intracellular microelectrode or a synapse. We assume that the current is
switchedonat? = 0and remains on. One frequently encounters this situation in experiments
to investigate the cable properties of neurons and axons. Afier some initial transients, the
voltage will reach a steady-state value. To compute the steady-state membrane potential,
we set dV /3t = () and write the cable equation as

22 d?V (x)
dx?
This reduces the original partial differential Eq. 2.7 to an ordinary second-order differential

equation depending solely on space. We now study its solutions for different neuronal
geometries.

= V(x) — rmlig(x) . 2.11)

2.2.1 Infinite Cable

We begin by assuming that a current Ii,; of constant amplitude is injected at the origin, x = 0,
of an infinite cable of diameter d. Mathematically, we describe this by setting fi,;j(x) to
Iyd(x), where § (x) is the Dirac delta or impulse distribution in space. As boundary condition
we assume that the voltage at the two infinitely distant terminals goes to zero as jx] — 0.
Using the theory of Fourier transforms (see Appendix B) we arrive at the solution

V(x) = Voe ¥+ (2.12)

with Vo = Iorn, /(21). This solution can easily be verified by placing it into Eq. 2.11. The
stationary voltage distribution, sometimes referred to as the electrotonus, in the infinite
cable decays exponentially away from the site of injection. The parameter controlling this
decay is the space constant ). The voltage decreases to e™!, that is, to 37% of its original
value, at x = A and to €2, or 13% of its original value, at x = 2A. In the derivation of the
cable equation, the steady-state space constant is defined as

A m 1/2_ Rm d 1/2 )13
‘(r,, "\ R, 4 ‘ (2.13)

The larger the membrane resistance R, the less current leaks across the membrane and the
larger the space constant A. Furthermore, a thick dendrite has a larger space constant than
a thin one, reflecting the fact that the spread of current is enhanced by a larger diameter.
Another way of deriving A involves computing the distance / over which the total resistance
to current flowing across the membrane is identical to the total longitudinal resistance.
Paying careful attention to the relevant units, we have r,, /I = r,l,orl = /r,/r, = A.
For a typical apical dendrite of a cortical cell with a 4 ym diameter, R; = 200 $2-cm and
R, = 20,000 © - cm?, the space constant A comes out to be 1 mm. This large distance,
compared to the diameter of the dendrite, is the reason why we can neglect the radial
components of voltage along these cables.
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Given the importance of A for the electrotonic spread of the potential in a neuron, we
frequently normalize the spatial coordinate x with respect to A, expressing it in dimension-
less units: X = x/A. Any particular distance £ can likewise be expressed in terms of the
associated dimensionless electrotonic distance L = €/ A.

What is the input resistance of the infinite cable? Operationally, it is measured by inserting
an electrode that passes current and, at a distance that is small compared to A, an electrode
to record the voltage. In the limit that this distance shrinks to zero, we can write

R. = Vix) _ Vix =0) ' 2.14)
Ii(x) Iy
The last equality holds because the input resistance at the location of the injecting electrode
is, by definition, equal to the ratio of the evoked potential to the injected current causing
this change. It follows that

R m _rak (rarm)'?

"o 22
The input resistance is—as expected—constant throughout the infinite and homogeneous
cable. Confirming our intuition, increasing either the membrane resistance or the intracel-
lular resistivity will increase Rj,.

Conceptually, we can think of an infinite cable as two semi-infinite cables, one going off
to the left and one to the right. The input resistance associated with a single semi-infinite
cable R,, must therefore be twice the resistance associated with the infinite cable (since
current can only flow in one direction); or

(2.15)

T'm 2
Roo = (ra 1) 2 = 1ok = =% = (RnR)'* —55. (2.16)

This variable, rather than the resistance associated with an infinite cable, is called R,
since it corresponds to the situation of a soma with a single dendrite extending into infinity
(Rall, 1959).

The input conductance of a semi-infinite cylinder is given by the inverse of Eq. 2.16,

1 1\ na®?
Gopy = — = . 2.17
7 Ry (RMR,-) 2 21

The input conductance decreases as the square root of the membrane resistance R,, and
increases as the 2 5 power of the diameter of the fiber, a relationship that will be important
later on.

The input resistance of a patch of membrane is linearly related to the membrane resistance
R, (with the constant of proportionality given by the total membrane area). In general, as
the dimensionality of the space increases, the dependency of the input resistance on R,
lessens. Thus, R;, in an mﬁmte cable is proportional to the square root of R,,. For a
two-dimensional resistive sheet Rm o log(R,,). In a three dimensional syncytium (such
as muscle tissue) Rj, o< e~/ R (qee Chap. 3 in Jack, Noble, and Tsien, 1975; Eisenberg
and Johnson, 1970). Given the area- or volume-filling geometry of the dendritic tree, the
dependency of its input resistance on R,, falls somewhere between that of an infinite cable
and that of the resistive sheet.

2.2.2 Finite Cable
Real neurons certainly do not possess infinitely long dendrites, so we need to consider
a finite piece of cable of total electrotonic length L = £/A. The general solution to the
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linear second-order ordinary differential cable equation can be expressed in normalized
electrotonic units as

V(X) = acosh(L — X) 4 Bsinh(L — X), (2.18)

with cosh(x) = (e* +e7*)/2 and sinh(x) = (¢* — ¢™*)/2. The values of @ and 8 depend
on the type of boundary conditions imposed at the two terminals. (What happens at the end
of the finite cable influences the voltage throughout the fiber.) We distinguish three different
boundary conditions.

Sealed-End Boundary Condition

This is the boundary condition of most relevance to neurons embedded in the living tissue.
It assumes that the end of the fiber is covered with neuronal membrane with resistance R,,.
It follows that the resistance terminating the equivalent circuit in Fig. 2.3 has the value
4R,,/nd* Ford = 2 um and R,, = 10° Q - cm? this is about 3000 GS2, a value so
high that for all intents and purposes we can consider it to be infinite. If the terminating
resistance is infinite, no axial current I; (X = L) will flow. And since the axial current is
given by the derivative of the voltage along the cable, this implies that

dV(X)
dx X=I

at the terminal. This zero-slope or von Neumann boundary condition is referred to as a
sealed-end boundary condition and is the onc commonly adopted to model the terminals of
dendrites or other neuronal processes. Applying Eq. 2.19 to Eq. 2.18 leads to

cosh(L — X)
cosh(L)

Figure 2.4 illustrates the voltage profile in a short and a long cable with such a scaled-end
boundary condition. As expected from Eq. 2.19, the slope of both curves flattens out as the
terminal is approached. Furthermore, both curves lie above the voltage decay in a semi-
infinite cable. In other words, the voltage in a cable with a sealed end—regardless of its
length—decays less rapidly than the voltage in a semi-infinite cable.

We compute the input resistance Rj, at the origin of the cable, looking into the cable
toward its terminal, using the samc strategy as in the previous section,

=0 (2.19)

VX) =V (2.20)

Rin = Rs coth(L), (2.21)

with coth(x) = cosh(x)/sinh(x). This is plotted in Fig. 2.5 (upper curve). This input
resistance is always higher than that of the semi-infinite cable, since the intra-axial current
I; is prevented from leaving the cable at the endpoint of the cable.

Killed-End Boundary Condition

Another type of houndary condition is of relevance when the dendrite or axon is
physically cut open or otherwise short-circuited. Under these conditions the intracellular
potential at the terminal is identical to the extracellular potential, that is, the effective
potential is set to zero,

V(X)l)(:L == VL IO (222)
This Dirichlet type of boundary condition is also known as open- or killed-end boundary
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Fig.2.4 STEADY-STATE VOLTAGE ATTENUATION Steady-state voltage attenuation in a finite piece
of cable as a function of the normalized clectrotonic distance X = x/A from the left terminal. The
potential at the left terminal is always held fixed at V = Vj, while the normalized potential throughout
the cable varies with the boundary condition at the right terminal. The bold continuous line corresponds
to the voltage in a semi-infinite cable, showing a pure exponential decay. The thin continuous lines
show the voltage decay for two cables that terminate in a sealed end (Eq. 2.20)at X = lor X = 2. This
is the type of boundary condition used most commonly in simulations. The two thin dashed curves
show the same two cables, but now terminating in a short circuit (killed-end boundary condition;
Eq. 2.23). Note that either the spatial derivative of voltage (sealed-end) or the voltage itself (killed-
end) is zero at the rightmost terminal. That the spatial voltage profile can be nonmonotonic in a passive
cable is witnessed by the topmost bold dashed curve, where the voltage at X = 1 is clamped to 1.1
times the voltage at the origin. For the lower bold dashed curve, the voltage at the terminal is clamped
to 0.2Vj. Reprinted in modified form by permission from Rall (1989).

condition and corresponds to setting the terminating resistance to zero. It follows that the
voltage along the cable is

_ Vo sinh(L — X)
V(X) = snh(D) , (2.23)

and the input resistance is
Rin = R tanh(L), (2.24)

with tanh(x) = sinh(x)/ cosh(x). The two thin dashed curves in Fig. 2.4 are the voltage
profiles along two cables of electrotonic length L = 1 and 2 with a killed-end boundary
condition. Their values are always less than the voltage at the corresponding location in a
semi-infinite cable. Correspondingly, the input resistance of these cables is always less than
that of the semi-infinite cable (Fig. 2.5). The input resistance at the origin X = 0 of the
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5

L

Fig. 2.5 INeUT RESISTANCE OF A FINITE CABLE Input resistance R;, looking into a cable of
electrotonic length L toward the right terminal. The ordinate is normalized in terms of the input
resistance Rj, of a semi-infinite cylinder (Eq. 2.16). The normalized input resistance for a sealed-end
boundary condition (upper curve) is always larger than R.., while the input resistance of a cable
with killed-end boundary condition (lower curve) is always less. In the former case, the current is
prevented from lcaving the cable at the endpoint, while the voltage is “shorted to ground” in the latter
case. For cables longer than two space constants, R, = Ro,.

cable is inversely proportional (see Eq. 2.2) to the slope of V. The actual input resistance as
a function of the clectrotonic length of a killed-end cable is shown in Fig. 2.5 (lower curve).

Arbitrary Boundary Condition

In general, the terminal has neither infinite (sealed-end) nor zero (killed-end) resistance,
but some finite value R; . This, for instance, is the case if the cable is connected to some
other cable or even to an entire dendritic tree. If we know the value of the voltage at this
boundary, that is, V; , we can express the voltage as

Vo sinh(L — X) + V} sinh(X)
sinh(L) )
Notice how this expression takes on the value Vo at X = O and V, at X = L. In Fig. 24
we show two such cases in which V; is either clamped to 0.2V}, or to 1.1V} (causing the
non-monotonic appearance). Note that this sagged appearance is a direct consequence of
the unusual boundary condition.
The leak current through the terminal follows from Ohm’s law and Eq. 2.2 as

V| -laven
Rilxer e dX |y

V(X)=

(2.25)

ir (2.26)
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We can now rewrite Eq. 2.25 as

cosh(L — X) + (Rx/Ry)sinh(L — X
VO = v, - SO = X) + (Reo/Ry) sinh(L = X) 02
cosh(L) + (R /R;) sinh(L)
resulting in a general expression for the voltage in a finite piece of cable.
With the help of Eq. 2.3 and the above equation, we can derive an expression for the

input resistance of a cable of length L with a terminating resistance R;,
R; + Ry tanh(L)

Ry + Ry tanh(L)

The previous two equations allow us to obtain the values for the voltage and the input
resistance for the sealed-end and the killed-end boundary conditions by setting R, to either

oo or 0. Furthermore we recover Rj, = R for an infinite cable (since tanh(L) goes to 1
as L — o).

Rin = Rs (2.28)

2.3 Time-Dependent Solutions

So far, we have only been concerned with the behavior of the voltage in a cable in response
to a stationary current injection, a situation where the voltage settles to a constant value. In
general though, we need to consider the voltage trajectory in response to some time-varying
current input. Since the time-dependent solution of the cable equation is substantially more
complex than the steady-state solution treated above, we will only discuss the solution to
two special cases. The interested reader is referred to the monographs by Jack, Noble, and
Tsien (1975) and by Tuckwell (1988a) for a treatment of many more cases of interest.

Before we do so, we will introduce a normalized version of the cable equation. Recalling
the definition of the neuronal time constant from Chap. | as

Ty = FmCm = RpChy (2.29)

allows us to introduce dimensionless variables for both time, T = t/1,,, and space,
X = x/A. Written in these units and taking care to properly transfrom the input current
(Sec. 4.4 in Tuckwell, 1988a), the cable equation becomes

8? T VX, T Iij(X, T
VLT VLT |y g X T)
ax? aT Acn

with [ini(X, T) = At,n Linj(x, t) and [;pj(x, t) corresponds to the stimulus current density.

, (2.30)

2.3.1 Infinite Cable

In order to compute the dynamic behavior of the infinite cable in response to current
injections we will once again exploit the linearity of Eq. 2.30, that is, the fact that if the
response of the membrane to the current (X, T) is V (X, T'), the polarization in response
tothe current o I (X, T) isaV(X, T).

Voltage Response to a Current Pulse

As discussed in the first chapter (and summarized in Appendix B), we can completely
characterize the system by computing the impulse response or Green’s function associated
with Eq. 2.30, which we do by transforming to the Fourier domain, assuming that V (X) —
0 as |X| — 00, and transferring back to the time domain (Jack, Noble, and Tsien, 1975).



